The Effectiveness of Biomedical and Other Applications by the Utilization of Gold Nanoparticles Manufactured Utilizing an Environmentally Safe Method: A Review
- Authors: Mahmood S.I.1, Abbas A.K.1, Alattar A.M.2
-
Affiliations:
- University of Baghdad
- AL-Karkh University of Science
- Issue: Vol 70, No 2 (2025)
- Pages: 374-389
- Section: Complex systems biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/292989
- DOI: https://doi.org/10.31857/S0006302925020168
- EDN: https://elibrary.ru/KYOFQS
- ID: 292989
Cite item
Abstract
This review will examine recent studies on the utilization of gold nanoparticles produced through the environmentally friendly green synthesis method. These nanoparticles are derived from extracts of plants with medicinal significance, such as leaves, peels, or seeds, and are subsequently loaded onto gold nanoparticles or other types of nanoparticles. The studies referenced in this review are sourced from reputable platforms including Google Scholar, ResearchGate, PubMed, and Scopus. We will ascertain whether these research have demonstrated the presence of nanoparticle-induced impacts on tissues. Multiple studies have consistently demonstrated that the toxicity of gold nanoparticles produced using environmentally sustainable methods is minimal. To mitigate environmental risks, it is imperative to prioritize the development of eco-friendly methods for synthesizing nanomaterials. Consequently, researchers are exploring green synthesis methods to address the gaps and alleviate the challenges. Biological synthesis processes are economically efficient, nontoxic, comparatively uncomplicated, and environmentally benign. The green synthesis process involves obtaining biological compounds from plant extracts, bacteria, and algae. The capacity to manipulate the morphological characteristics (such as size, form, and crystalline structure) of AuNPs during their creation plays a significant role in several sectors of application. Biological molecules derived from plants are appropriate for synthesizing metal nanoparticles. Numerous studies have demonstrated the potential of utilizing nanoparticles, including gold and other types, to administer treatment with minimal impact on healthy tissues. Additionally, these nanoparticles possess the capability to repair damage.
About the authors
Shurooq Ibrahim Mahmood
University of BaghdadBiology Dept., College of Science Baghdad, Iraq
Amal Khudair Abbas
University of BaghdadBiology Dept., College of Science Baghdad, Iraq
Ashraf M. Alattar
AL-Karkh University of Science
Email: ashraf_alattar2000@kus.edu.iq
Medical Physics Dept., College of Science Baghdad, Iraq
References
- Alex S. and Tiwari A. Functionalized gold nanoparticles: synthesis, properties and applications −A review. J. Nanosci. Nanotechnol., 15, 1869–1894 (2015). doi: 10.1166/jnn.2015.9718
- Chang C. C., Chen C. P., Wu T. H., Yang C. H., Lin C.W., and Chen C. Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials, 9, 1–24 (2019). doi: 10.3390/nano9060861
- Guliy O. I. and Dykman L. A. Gold nanoparticle-based lateral-flow immunochromatographic biosensing assays for the diagnosis of infections. Biosens. Bioelectron. X, 17, 100457 (2024). doi: 10.1016/j.biosx.2024.100457
- Suneetha G., Ayodhya D., and Sunitha Manjari P., Schiff base stabilized gold nanoparticles: synthesis, characterization, catalytic reduction of nitroaromatic compounds, fluorometric sensing, and biological activities. Results Chem., 5, 100688 (2023). doi: 10.1016/j.rechem.2022.100688
- Sharifi M., Hosseinali S. H., Yousefvand P., Salihi A., Shekha M. S., Aziz F. M., JouyaTalaei A., Hasan A., and Falahati M. Gold nanozyme: Biosensing and therapeutic activities. Mater. Sci. Eng. C, 108, 110422 (2020). doi: 10.1016/j.msec.2019.110422
- Sarfraz N. and Khan I., Plasmonic gold nanoparticles (AuNPs): Properties, synthesis and their advanced energy, environmental and biomedical applications. Chem. Asian J., 16, 720–742 (2021). doi: 10.1002/asia.202001202
- Hammami I., Alabdallah N. M., Jomaa A. A., and Kamoun M. Gold nanoparticles: Synthesis properties and applications. J. King Saud-Univ. Sci., 33, 101560 (2021). doi: 10.1016/j.jksus.2021.101560
- Amina S. J. and Guo B. Review on the Synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomed., 15, 9823–9857 (2020). doi: 10.2147/IJN.S279094
- Hu X., Zhang Y., Ding T., Liu J., and Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 8, 990 (2020). doi: 10.3389/fbioe.2020.00990
- Menon S., Rajeshkumar S., and Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour.-Effic. Technol., 3, 516–527 (2017). doi: 10.1016/j.reffit.2017.08.002
- Tian F., Bonnier F., Casey A., Shanahan A. E., and Byrne H. J. Surface enhanced Raman scattering with gold nanoparticles: Effect of particle shape. Anal. Methods, 6 (22), 9116–9123 (2014). doi: 10.1039/C4AY02112F
- Bansal S. A., Kumar V., Karimi J., Singh A. P., and Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2, 3764–3787 (2020). doi: 10.1039/d0na00472c
- Aldewachi H., Chalati T., Woodroofe M. N., BricklebankN., Sharrack B., and Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 10 (1), 18–33 (2018). doi: 10.1039/c7nr06367a
- Kulabhusan P. K., Tripathi A., and Kant K. Gold nanoparticles and plant pathogens: An overview and prospective for biosensing in forestry. Sensors, 22, 1259 (2022). doi: 10.3390/s22031259
- Sibuyi N. R. S., Moabelo K. L., Fadaka A. O., Meyer S., Onani M. O., Madiehe A. M., and Meyer M. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A Review. Nanoscale Res. Lett., 16, 174 (2021). doi: 10.1186/s11671-021-03632-w
- Khan M. A. R., Al Mamun M. S., Habib M. A., Islam A. B. M. N., Mahiuddin M., Karim K. M. R., Naime J., Saha P., Dey S. K., and Ara M. H. A review on gold nanoparticles: biological synthesis, characterizations, and analytical applications. Results Chem., 4, 100478 (2022). doi: 10.1016/j.rechem.2022.100478
- Tessaro L., Aquino A., de Carvalho A. P. A., and Conte-Junior C. A. A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection. Sens. Actuators Rep., 3, 100060 (2021). doi: 10.1016/j.snr.2021.100060
- Zhao J., Wang L., Fu D., Zhao D., Wang Y., Yuan Q., Zhu Y., Yang J., and Yang F., Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators, A Phys., 321, 112563 (2021). doi: 10.1016/j.sna.2021.112563
- Amina S. J. and Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomed., 15, 9823–9857 (2020). doi: 10.2147/IJN.S279094
- Elahi N., Kamali M., and Baghersad M. H. Recent biomedical applications of gold nanoparticles: a review. Talanta, 184, 537–556 (2018). doi: 10.1016/j.talanta.2018.02.088
- Sabela M., Balme S., Bechelany M., Janot J. M., and Bisetty K. A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv. Eng. Mater., 19, 1–24 (2017). doi: 10.1002/adem.201700270
- Ferrari E. Gold nanoparticle-based plasmonic biosensors. Biosensors, 13 (3), 411 (2023). doi: 10.3390/bios13030411
- Jeyaraj M., Gurunathan S., Qasim M., Kang M. H., and Kim J. H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9 (12), 1719 (2019). doi: 10.3390/nano9121719
- Ealias A. M. and Saravanakumar M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng., 263 (3), 032019 (2017). doi: 10.1088/1757-899X/263/3/032019
- Lee K. X., Shameli K., Yew Y. P., Teow S. Y., Jahangirian H., Rafiee-Moghaddam R., and Webster T. J. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int. J. Nanomed., 15, 275–300 (2020). doi: 10.2147/IJN.S233789
- Dong J., Carpinone P. L., Pyrgiotakis G., Demokritou P., and Moudgil B. M. Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Part. J., 37, 224–232 (2020). doi: 10.14356/kona.2020011
- Nanomed G. J., Singh J., Singh T., and Rawat M. Green synthesis of silver nanoparticles via various plant extracts for anti-cancer applications. Glob. J. Nanomed., 2, 2–5 (2017). doi: 10.19080/GJN.2017.02.555590
- https://ars.els-cdn.com/content/image/1-s2.0S2211715622001977-gr2.jpg
- Vozga I. and Kacani J. Application of inert gas condensation. World J. Engineer. Res. Technol., 6 (2), 11–22 (2020).
- Kafle B. P. Introduction to nanomaterials and application of UV-Visible spectroscopy for their characterization. In: Chemical Analysis and Material Characterization by Spectrophotometry (Elsevier, Amsterdam, Netherlands, 2020), pp. 147–198.
- Cavaliere P. D., Perrone A., and Silvello A. Water electrolysis for the production of hydrogen to be employed in the ironmaking and steelmaking industry. Metals, 11 (11), 1816 (2021). doi: 10.3390/met11111816
- Wang H., Xu J. Z., Zhu J. J., and Chen H. Y. Preparation of CuO nanoparticles by microwave irradiation. J. Crystal Growth, 244 (1), 88–94 (2002). doi: 10.1016/S0022-0248(02)01571-3
- Rao Y. N., Banerjee D., Datta A., Das S. K., Guin R., and Saha A. Gamma irradiation route to synthesis of highly redispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem., 79 (12), 1240–1246 (2010). doi: 10.1016/j.radphyschem.2010.07.004
- Kovalska E., Luxa J., Hartman T., Antonatos N., Shaban P., Oparin E., Zhukova M., and Sofer Z. Nonaqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation. Nanoscale, 12 (4), 2638–2647 (2020). doi: 10.1039/C9NR10257D
- Cavaliere P. D., Perrone A., and Silvello A. Water electrolysis for the production of hydrogen to be employed in the ironmaking and steelmaking industry. Metals, 11 (11), 1816 (2021). doi: 10.3390/met11111816
- Kong Y., Ahmad B., Al-sadoon M. K., and Fahad M. Novel green synthesis, chemical characterization, toxicity, colorectal carcinoma, antioxidant, anti-diabetic, and anticholinergic properties of silver nanoparticles: a chemopharmacological study. Arab. J. Chem., 14, 103193 (2021).
- https://miro.medium.com/v2/resize:fit:720/format:webp/0*nso_gmGxr61FL4y8.png
- Shabani M. G., Ghahfarokhi M. S., Shabani Z. G., Akbarzadeh A., Riazi G., Ajdari S., Amani A., and Razzaghi A. M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach, Process Biochem., 50 (7), 1076–1085 (2015). doi: 10.1016/j.procbio.2015.04.004
- Hulkoti N. I. and Taranath T. C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces, 121, 474–483 (2014). doi: 10.1016/j.colsurfb.2014.05.027
- Zhang X., Qu Y., Shen W., Wang J., Li H., Zhang Z., Li S., and Zhou J. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf. A Physicochem. Eng. Asp., 497, 280–285 (2016). doi: 10.1016/j.colsurfa.2016.02.033
- Barabadi H., Honary S., Ebrahimi P., Mohammadi M. A., Alizadeh A., and Naghibi F. Microbial mediated preparation, characterization and optimization of gold nanoparticles. Brazil. J. Microbiol., 45 (4), 1493–1501 (2015). doi: 10.1590/s1517-83822014000400046
- Roy S., Das T. K., Maiti G. P., and Basu U. Microbial biosynthesis of nontoxic gold nanoparticles. Mater. Sci. Eng. B., 203, 41–51 (2016). doi: 10.1016/j.mseb.2015.10.008
- Kahzad N. and Salehzadeh A. Green synthesis of CuFe2O4@Ag nanocomposite using the Chlorella vulgaris and evaluation of its effect on the expression of norA efflux pump gene among Staphylococcus aureus strains. Biol. Trace Elem. Res., 198 (1), 359–370 (2020). doi: 10.1007/s12011-020-02055-5
- Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int. Schol. Res. Notices, 2014, 359316 (2014). doi: 10.1155/2014/359316
- Zhang D., Ma X., Gu Y., Huang H., and Zhang G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem., 8, 799 (2020). doi: 10.3389/fchem.2020.00799
- Johnston C. W., Wyatt M. A., Li X., Ibrahim A., Shuster J., Southam G., and Magarvey N. A. Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chem. Biol., 9 (4), 241–243 (2013). doi: 10.1038/nchembio.1179
- Mittal A. K., Chisti Y., and Banerjee U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 31 (2), 346–356 (2013). doi: 10.1016/j.biotechadv.2013.01.003
- Dwivedi A. D. and Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp., 369 (1–3), 27–33 (2010). doi: 10.1016/j.colsurfa.2010.07.020
- Prathna T. C., Mathew L., Chandrasekaran N., Raichur A. M., and Mukherjee A. Biomimetic synthesis of nanoparticles: science, technology & applicability. In Biomimetics Learning from Nature (InTech, London, UK, 2010). doi: 10.5772/8776
- Bromley K. M., Patil A. J., Perriman A. W., Stubbs G., and Mann S. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles, J. Mater. Chem., 18, 4796–4801 (2008). doi: 10.1039/b809585
- Ahiwale S. S., Bankar A. V., Tagunde S., and Kapadnis B. P. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Ind. J. Microbiol., 57 (2), 188–194 (2017). doi: 10.1007/s12088-017-0640-x
- Dhuper S., Panda D., and Nayak P. L. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends J. Nanotech. App., 13 (2), 16–22 (2012).
- Ahmad N., Sharma S. M. K., Alam M. K., Singh V. N., Shamsi S. F., Mehta B. R., and Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 81 (1), 81–86 (2010). doi: 10.1016/j.colsurfb.2010.06.029
- Bankar A., Joshi B., Kumar A. R., and Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B, 80 (1), 45–50 (2010). doi: 10.1016/j.colsurfb.2010.05.029
- Pandey A. and Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem., 2 (5), 115–119 (2014).
- Belokurov S. S., Narkevich I. A., Flisyuk E. V., Kaukhova I. E., and Aroyan M. V. Modern extraction methods for medicinal plant raw material (Review). Pharm. Chem. J., 53, 559–563 (2019). doi: 10.1007/s11094-019-02037-5
- Dekebo A. Introductory chapter: plant extracts. In: Plant Extracts (IntechOpen, 2019). doi: 10.5772/intechopen.79069
- Zhang Q.-W., Lin L.-G., and Ye W.-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med., 13, 20 (2018). doi: 10.1186/s13020-018-0177-x
- Schlosser S. K. and Mart´ak R. Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA. Sep. Purif. Technol., 41 (3), 237–266 (2005). doi: 10.1016/j.seppur.2004.07.019
- Azwanida N. N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 4, 3 (2015). doi: 10.4172/2167-0412.1000196
- Bhat A. R., Najar M. H., Dongre R. S., and Akhter M. S. Microwave assisted synthesis of Knoevenagel Derivatives using water as green solvent. Curr. Res. Green Sustain. Chem., 3, 100008 (2020). doi: 10.1016/j.crgsc.2020.06.001
- Rao S. S., Saptami K., Venkatesan J., and Rekha P. D. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity. Int. J. Biol. Macromol., (2020). doi: 10.1016/j.crgsc.2020.06.001
- Trusheva B., Trunkova D., and Bankova V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J., 1, 13 (2007). doi: 10.1186/1752-153X-1-13
- Oroian M., Dranca F., and Ursachi F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. J. Food Sci. Technol., 57 (1), 70–78 (2020). doi: 10.1007/s13197-019-04031-x
- Ferioli F., Giambanelli E., D'Alessandro V., and D'Antuono L. F. Comparison of two extraction methods (high pressure extraction vs. maceration) for the total and relative amount of hydrophilic and lipophilic organosulfur compounds in garlic cloves and stems. An application to the Italian ecotype “Aglio Rosso di Sulmona” (Sulmona Red Garlic). Food Chem., 312, 126086 (2020). doi: 10.1016/j.foodchem.2019.126086
- Altemimi A., Lakhssassi N., Baharlouei A., Watson D. G., and Lightfoot D. A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6 (4), 42 (2017). doi: 10.3390/plants6040042
- Saranya P. and Premalatha S. Biosynthesis and characterization of gold nanoparticles using leaves extract of Piliostigma thonningii and their antimicrobial activity. Int. J. Adv. Res. Biol. Sci., 3 (7), 75–84 (2016).
- Elia P., Zach R., Hazan S., Kolusheva S., Porat Z., and Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed., 9 (1), 4007–4021 (2014). doi: 10.2147/IJN.S57343
- Javed R., Zia M., Naz S., Aisida S. O., Ain N. U., and Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnol., 18 (1), 172 (2020). doi: 10.1186/s12951-020-00704-4
- Mikhailova E. O. Gold nanoparticles: biosynthesis and potential of biomedical application. J. Funct. Biomater., 12 (4), 70 (2021). doi: 10.3390/jfb12040070
- Sani A., Cao C., and Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep., 26, 100991 (2021). doi: 10.1016/j.bbrep.2021.100991
- Roy A. Plant derived silver nanoparticles and their therapeutic applications. Curr. Pharm. Biotechnol., 22 (14), 1834–1847 (2021). doi: 10.2174/1389201021666201027155708
- Raina S., Roy A., and Bharadvaja N. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ. Nanotechnol., Monitoring & Management, 13, 100278 (2020). doi: 10.1016/j.enmm.2019.100278
- Mittal S. and Roy A. Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In: Photocatalytic Degradation of Dyes (Elsevier, Amsterdam, Netherlands, 2021), pp. 287–308. doi: 10.1016/B978-0-12-823876-9.00009-3
- Verma A., Roy A., and Bharadvaja N. Remediation of heavy metals using nanophytoremediation. In: Advanced Oxidation Processes for Effluent Treatment Plants (Elsevier, Amsterdam, Netherlands, 2021), pp. 273–296. doi: 10.1016/B978-0-12-821011-6.00013-X
- Roy A. and Bharadvaja N. Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biomimetic and Nanobiomaterials, 8 (2), 130–140 (2019). doi: 10.1680/jbibn.18.00036
- Roy A. and Bharadvaja N. Silver nanoparticles synthesis from a pharmaceutically important medicinal plant Plumbago zeylanica. MOJ Bioequivalence & Bioavailability, 3 (5), 46 (2017). doi: 10.15406/mojbb.2017.03.00046
- Tran N., Mir A., Mallik D., Sinha A., Nayar S., and Webster T. J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed., 5, 277–283 (2010). doi: 10.2147/ijn.s9220
- Liu P., Duan W., Wang Q., and Li X., The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf. B Biointerfaces, 78 (2), 171–176 (2010). doi: 10.1016/j.colsurfb.2010.02.024
- Sravanthi M., Kumar D. M., Usha B., Ravichandra M., Rao M. M., and Hemalatha K. P., Biological synthesis and characterization of copper oxide nanoparticles using antigonon leptopus leaf extract and their antibacterial activity. Int. J. Adv. Res., 4 (8), 589–602 (2016). doi: 10.21474/IJAR01/1251
- Siddiqi K. S. and Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett., 11 (1), 482 (2016). doi: 10.1186/s11671-016-1695-z
- Lloyd J. R., Byrne J. M., and Coker V. S. Biotechnological synthesis of functional nanomaterials. Curr. Opin. Biotechnol., 22 (4), 509–515 (2011). doi: 10.1016/j.copbio.2011.06.008
- Nguyen V. H. and Shim J. J. Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites. J. Spectrosc., 2015, 297804 (2015). doi: 10.1155/2015/297804
- Dhandapani P., Maruthamuthu S., and Rajagopal G., Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J. Photochem. Photobiol. B, 110, 43–49 (2012). doi: 10.1016/j.jphotobiol.2012.03.003
- Sun S., Murray C. B., Weller D., Folks L., and Moser A., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 287 (5460), 1989–1992 (2000). doi: 10.1126/science.287.5460.1989
- Anjum S. and Abbasi B. H. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa. Int. J. Nanomed., 11, 1663 (2016). doi: 10.2147/IJN.S105532
- Giljohann D. A., Seferos D. S., Daniel W. L., Massich M.D., Patel P. C., and Mirkin C. A., Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition., 49 (19), 3280–3294 (2010). doi: 10.1002/anie.200904359
- Pereira L., Mehboob F., Stams A. J. M., Mota M. M., Rijnaarts H. H. M., and Alves M. M., Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit. Rev. Biotechnol., 35 (1), 114–128 (2015). doi: 10.3109/07388551.2013.819484
- Dhiman M., Sharma L., Singh A., and Sharma M. M. Biosynthesized nanomaterials: Hope for the resolution of societal problems. In: Biological Synthesis of Nanoparticles and Their Applications, Ed. by L. Karthik, A. V. Kirthi, S. Ranjan, and V. M. Srinivasan (CRC Press, 2020), pp. 233–256. doi: 10.1201/9780429265235-18
- Kumar V. and Yadav S. K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol., 84, 151–157 (2009). doi: 10.1002/jctb.2023
- Groning R., Breitkreutz J., Baroth V., and Muller R. S. Nanoparticles in plant extracts: factors which influence the formation of nanoparticles in black tea infusions. Pharmazie, 56 (10), 790–792 (2001). PMID: 11683125
- Tang D., Yuan R., and Chai Y. Ligand-functionalized core-shell Ag–Au nanoparticles label-free amperometricimmunbiosensor. Biotechnol. Bioeng., 94 (5), 996–1004 (2006). doi: 10.1002/bit.20922
- Paciotti G. F., Myer L., Weinreich D., Goia D., Pavel N., McLaughlin R. E. and Tamarkin L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 11 (3), 169–183 (2004). doi: 10.1080/10717540490433895
- Zheng D., Hu C., Gan T., Dang X., and Hu S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens. Actuators B Chem., 148 (1), 247–252 (2010). doi: 10.1016/j.snb.2010.04.031
- Syed A., Raja R., Kundu G. C., Gambhir S. and Ahmad A. Extracellular biosynthesis of monodispersed gold nanoparticles, their characterization, cytotoxicity assay, biodistribution and conjugation with the anticancer drug doxorubicin. Nanomed. Nanotechnol., 4 (1), 156 (2013). doi: 10.4172/2157-7439.1000155
- Malathi S., Balakumaran M. D., Kalaichelvan P. T., and Balasubramanian S. Green synthesis of gold nanoparticles for controlled delivery. Adv. Mater. Lett., 4 (12), 933–940 (2013). doi: 10.5185/amlett.2013.5477
- Bahrami B., Hojjat-Farsangi M., Mohammadi H., Anvari E., Ghalamfarsa G., Yousefi M., and Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 190, 64–83 (2017). doi: 10.1016/j.imlet.2017.07.015
- Thakuria A., Kataria B., and Gupta D. Nanoparticlebased methodologies for targeted drug delivery—an insight. J. Nanoparticle Res., 23, 87 (2021). doi: 10.1007/s11051-021-05190-9
- Hampp E., Botah R., Odusanya O. S., Anuku N., Malatesta K. A., and Soboyejo W. O. Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. J. Mater. Res., 27 (22), 2891–2901 (2012). doi: 10.1557/jmr.2012.317
- D’Acunto M., Cioni P., Gabellieri E., and Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology, 32, 192001 (2021). doi: 10.1088/1361-6528/abe1ed
- Shipway A. N., Katz E., and Willner I., Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Angew. Chemie, 39, 19–52 (2000). doi: 10.1002/1439-7641(20000804)1:1<18
- Siciliano G., Alsadig A., Chiriaco M. S., Turco A., Foscarini A., Ferrara F., Gigli G., Primiceri E. Beyond traditional biosensors: recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta, 268 (1), 125280 (2024). doi: 10.1016/j.talanta.2023.125280
- Zhao J., Bo B., Yin Y.-M., and Li G.-X. Gold nanoparticlesbased biosensors for biomedical application. Nano LIFE, 02 (04), 1230008 (2012). doi: 10.1142/s1793984412300087
- Qin L., Zeng G., Lai C., Huang D., Xu P., Zhang Ch., Cheng M., Liu X., Liu Sh., B. Li, and Yi H. “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord. Chem. Rev., 359, 1–31 (2018). doi: 10.1016/j.ccr.2018.01.006
- Wang K., Zhang W., Zhang X., Hu X., Chang Sh., and Zhang H. Highly sensitive gold nanoparticles-DNA nanosensor for γ-radiation detection. ACS Appl. Mater. Interfaces, 12 (37), 42403–42409 (2020). doi: 10.1021/acsami.0c12234
- Muthuvel K., Adavallan B. K., and Krishnakumar N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr., 4 (2), 325–332 (2014). doi: 10.1016/j.bionut.2014.03.004
- Naeem H., Ajmal M., Muntha S., Ambreen J., and Siddiq M. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants. RSC Advances, 8 (7), 3599–3610 (2018). doi: 10.1039/C7RA12030C
- Weir A., Westerhoff P., Fabricius L., Hristovski K., and Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 46 (4), 2242–2250 (2012). doi: 10.1021/es204168d
- Pereda M., Marcovich N. E., and Ansorena M. R. Nanotechnology in food packaging applications: barrier materials, antimicrobial agents, sensors, and safety assessment. In: Handbook of ecomaterials, Ed. by L. Martinez, O. Kharissova, and B. Kharisov (Springer, 2018). doi: 10.1007/978-3-319-68255-6_30
- Oliveira H. C., Stolf-Moreira R., Martinez C. B. R., Grillo R., de Jesus M. B., and Fraceto L. F. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One, 10 (7), e0132971 (2015). doi: 10.1371/journal.pone.0132971
Supplementary files
