The Effectiveness of Biomedical and Other Applications by the Utilization of Gold Nanoparticles Manufactured Utilizing an Environmentally Safe Method: A Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review will examine recent studies on the utilization of gold nanoparticles produced through the environmentally friendly green synthesis method. These nanoparticles are derived from extracts of plants with medicinal significance, such as leaves, peels, or seeds, and are subsequently loaded onto gold nanoparticles or other types of nanoparticles. The studies referenced in this review are sourced from reputable platforms including Google Scholar, ResearchGate, PubMed, and Scopus. We will ascertain whether these research have demonstrated the presence of nanoparticle-induced impacts on tissues. Multiple studies have consistently demonstrated that the toxicity of gold nanoparticles produced using environmentally sustainable methods is minimal. To mitigate environmental risks, it is imperative to prioritize the development of eco-friendly methods for synthesizing nanomaterials. Consequently, researchers are exploring green synthesis methods to address the gaps and alleviate the challenges. Biological synthesis processes are economically efficient, nontoxic, comparatively uncomplicated, and environmentally benign. The green synthesis process involves obtaining biological compounds from plant extracts, bacteria, and algae. The capacity to manipulate the morphological characteristics (such as size, form, and crystalline structure) of AuNPs during their creation plays a significant role in several sectors of application. Biological molecules derived from plants are appropriate for synthesizing metal nanoparticles. Numerous studies have demonstrated the potential of utilizing nanoparticles, including gold and other types, to administer treatment with minimal impact on healthy tissues. Additionally, these nanoparticles possess the capability to repair damage.

About the authors

Shurooq Ibrahim Mahmood

University of Baghdad

Biology Dept., College of Science Baghdad, Iraq

Amal Khudair Abbas

University of Baghdad

Biology Dept., College of Science Baghdad, Iraq

Ashraf M. Alattar

AL-Karkh University of Science

Email: ashraf_alattar2000@kus.edu.iq
Medical Physics Dept., College of Science Baghdad, Iraq

References

  1. Alex S. and Tiwari A. Functionalized gold nanoparticles: synthesis, properties and applications −A review. J. Nanosci. Nanotechnol., 15, 1869–1894 (2015). doi: 10.1166/jnn.2015.9718
  2. Chang C. C., Chen C. P., Wu T. H., Yang C. H., Lin C.W., and Chen C. Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials, 9, 1–24 (2019). doi: 10.3390/nano9060861
  3. Guliy O. I. and Dykman L. A. Gold nanoparticle-based lateral-flow immunochromatographic biosensing assays for the diagnosis of infections. Biosens. Bioelectron. X, 17, 100457 (2024). doi: 10.1016/j.biosx.2024.100457
  4. Suneetha G., Ayodhya D., and Sunitha Manjari P., Schiff base stabilized gold nanoparticles: synthesis, characterization, catalytic reduction of nitroaromatic compounds, fluorometric sensing, and biological activities. Results Chem., 5, 100688 (2023). doi: 10.1016/j.rechem.2022.100688
  5. Sharifi M., Hosseinali S. H., Yousefvand P., Salihi A., Shekha M. S., Aziz F. M., JouyaTalaei A., Hasan A., and Falahati M. Gold nanozyme: Biosensing and therapeutic activities. Mater. Sci. Eng. C, 108, 110422 (2020). doi: 10.1016/j.msec.2019.110422
  6. Sarfraz N. and Khan I., Plasmonic gold nanoparticles (AuNPs): Properties, synthesis and their advanced energy, environmental and biomedical applications. Chem. Asian J., 16, 720–742 (2021). doi: 10.1002/asia.202001202
  7. Hammami I., Alabdallah N. M., Jomaa A. A., and Kamoun M. Gold nanoparticles: Synthesis properties and applications. J. King Saud-Univ. Sci., 33, 101560 (2021). doi: 10.1016/j.jksus.2021.101560
  8. Amina S. J. and Guo B. Review on the Synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomed., 15, 9823–9857 (2020). doi: 10.2147/IJN.S279094
  9. Hu X., Zhang Y., Ding T., Liu J., and Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 8, 990 (2020). doi: 10.3389/fbioe.2020.00990
  10. Menon S., Rajeshkumar S., and Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour.-Effic. Technol., 3, 516–527 (2017). doi: 10.1016/j.reffit.2017.08.002
  11. Tian F., Bonnier F., Casey A., Shanahan A. E., and Byrne H. J. Surface enhanced Raman scattering with gold nanoparticles: Effect of particle shape. Anal. Methods, 6 (22), 9116–9123 (2014). doi: 10.1039/C4AY02112F
  12. Bansal S. A., Kumar V., Karimi J., Singh A. P., and Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2, 3764–3787 (2020). doi: 10.1039/d0na00472c
  13. Aldewachi H., Chalati T., Woodroofe M. N., BricklebankN., Sharrack B., and Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 10 (1), 18–33 (2018). doi: 10.1039/c7nr06367a
  14. Kulabhusan P. K., Tripathi A., and Kant K. Gold nanoparticles and plant pathogens: An overview and prospective for biosensing in forestry. Sensors, 22, 1259 (2022). doi: 10.3390/s22031259
  15. Sibuyi N. R. S., Moabelo K. L., Fadaka A. O., Meyer S., Onani M. O., Madiehe A. M., and Meyer M. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A Review. Nanoscale Res. Lett., 16, 174 (2021). doi: 10.1186/s11671-021-03632-w
  16. Khan M. A. R., Al Mamun M. S., Habib M. A., Islam A. B. M. N., Mahiuddin M., Karim K. M. R., Naime J., Saha P., Dey S. K., and Ara M. H. A review on gold nanoparticles: biological synthesis, characterizations, and analytical applications. Results Chem., 4, 100478 (2022). doi: 10.1016/j.rechem.2022.100478
  17. Tessaro L., Aquino A., de Carvalho A. P. A., and Conte-Junior C. A. A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection. Sens. Actuators Rep., 3, 100060 (2021). doi: 10.1016/j.snr.2021.100060
  18. Zhao J., Wang L., Fu D., Zhao D., Wang Y., Yuan Q., Zhu Y., Yang J., and Yang F., Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators, A Phys., 321, 112563 (2021). doi: 10.1016/j.sna.2021.112563
  19. Amina S. J. and Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomed., 15, 9823–9857 (2020). doi: 10.2147/IJN.S279094
  20. Elahi N., Kamali M., and Baghersad M. H. Recent biomedical applications of gold nanoparticles: a review. Talanta, 184, 537–556 (2018). doi: 10.1016/j.talanta.2018.02.088
  21. Sabela M., Balme S., Bechelany M., Janot J. M., and Bisetty K. A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv. Eng. Mater., 19, 1–24 (2017). doi: 10.1002/adem.201700270
  22. Ferrari E. Gold nanoparticle-based plasmonic biosensors. Biosensors, 13 (3), 411 (2023). doi: 10.3390/bios13030411
  23. Jeyaraj M., Gurunathan S., Qasim M., Kang M. H., and Kim J. H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9 (12), 1719 (2019). doi: 10.3390/nano9121719
  24. Ealias A. M. and Saravanakumar M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng., 263 (3), 032019 (2017). doi: 10.1088/1757-899X/263/3/032019
  25. Lee K. X., Shameli K., Yew Y. P., Teow S. Y., Jahangirian H., Rafiee-Moghaddam R., and Webster T. J. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int. J. Nanomed., 15, 275–300 (2020). doi: 10.2147/IJN.S233789
  26. Dong J., Carpinone P. L., Pyrgiotakis G., Demokritou P., and Moudgil B. M. Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Part. J., 37, 224–232 (2020). doi: 10.14356/kona.2020011
  27. Nanomed G. J., Singh J., Singh T., and Rawat M. Green synthesis of silver nanoparticles via various plant extracts for anti-cancer applications. Glob. J. Nanomed., 2, 2–5 (2017). doi: 10.19080/GJN.2017.02.555590
  28. https://ars.els-cdn.com/content/image/1-s2.0S2211715622001977-gr2.jpg
  29. Vozga I. and Kacani J. Application of inert gas condensation. World J. Engineer. Res. Technol., 6 (2), 11–22 (2020).
  30. Kafle B. P. Introduction to nanomaterials and application of UV-Visible spectroscopy for their characterization. In: Chemical Analysis and Material Characterization by Spectrophotometry (Elsevier, Amsterdam, Netherlands, 2020), pp. 147–198.
  31. Cavaliere P. D., Perrone A., and Silvello A. Water electrolysis for the production of hydrogen to be employed in the ironmaking and steelmaking industry. Metals, 11 (11), 1816 (2021). doi: 10.3390/met11111816
  32. Wang H., Xu J. Z., Zhu J. J., and Chen H. Y. Preparation of CuO nanoparticles by microwave irradiation. J. Crystal Growth, 244 (1), 88–94 (2002). doi: 10.1016/S0022-0248(02)01571-3
  33. Rao Y. N., Banerjee D., Datta A., Das S. K., Guin R., and Saha A. Gamma irradiation route to synthesis of highly redispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem., 79 (12), 1240–1246 (2010). doi: 10.1016/j.radphyschem.2010.07.004
  34. Kovalska E., Luxa J., Hartman T., Antonatos N., Shaban P., Oparin E., Zhukova M., and Sofer Z. Nonaqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation. Nanoscale, 12 (4), 2638–2647 (2020). doi: 10.1039/C9NR10257D
  35. Cavaliere P. D., Perrone A., and Silvello A. Water electrolysis for the production of hydrogen to be employed in the ironmaking and steelmaking industry. Metals, 11 (11), 1816 (2021). doi: 10.3390/met11111816
  36. Kong Y., Ahmad B., Al-sadoon M. K., and Fahad M. Novel green synthesis, chemical characterization, toxicity, colorectal carcinoma, antioxidant, anti-diabetic, and anticholinergic properties of silver nanoparticles: a chemopharmacological study. Arab. J. Chem., 14, 103193 (2021).
  37. https://miro.medium.com/v2/resize:fit:720/format:webp/0*nso_gmGxr61FL4y8.png
  38. Shabani M. G., Ghahfarokhi M. S., Shabani Z. G., Akbarzadeh A., Riazi G., Ajdari S., Amani A., and Razzaghi A. M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach, Process Biochem., 50 (7), 1076–1085 (2015). doi: 10.1016/j.procbio.2015.04.004
  39. Hulkoti N. I. and Taranath T. C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces, 121, 474–483 (2014). doi: 10.1016/j.colsurfb.2014.05.027
  40. Zhang X., Qu Y., Shen W., Wang J., Li H., Zhang Z., Li S., and Zhou J. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf. A Physicochem. Eng. Asp., 497, 280–285 (2016). doi: 10.1016/j.colsurfa.2016.02.033
  41. Barabadi H., Honary S., Ebrahimi P., Mohammadi M. A., Alizadeh A., and Naghibi F. Microbial mediated preparation, characterization and optimization of gold nanoparticles. Brazil. J. Microbiol., 45 (4), 1493–1501 (2015). doi: 10.1590/s1517-83822014000400046
  42. Roy S., Das T. K., Maiti G. P., and Basu U. Microbial biosynthesis of nontoxic gold nanoparticles. Mater. Sci. Eng. B., 203, 41–51 (2016). doi: 10.1016/j.mseb.2015.10.008
  43. Kahzad N. and Salehzadeh A. Green synthesis of CuFe2O4@Ag nanocomposite using the Chlorella vulgaris and evaluation of its effect on the expression of norA efflux pump gene among Staphylococcus aureus strains. Biol. Trace Elem. Res., 198 (1), 359–370 (2020). doi: 10.1007/s12011-020-02055-5
  44. Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int. Schol. Res. Notices, 2014, 359316 (2014). doi: 10.1155/2014/359316
  45. Zhang D., Ma X., Gu Y., Huang H., and Zhang G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem., 8, 799 (2020). doi: 10.3389/fchem.2020.00799
  46. Johnston C. W., Wyatt M. A., Li X., Ibrahim A., Shuster J., Southam G., and Magarvey N. A. Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chem. Biol., 9 (4), 241–243 (2013). doi: 10.1038/nchembio.1179
  47. Mittal A. K., Chisti Y., and Banerjee U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 31 (2), 346–356 (2013). doi: 10.1016/j.biotechadv.2013.01.003
  48. Dwivedi A. D. and Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp., 369 (1–3), 27–33 (2010). doi: 10.1016/j.colsurfa.2010.07.020
  49. Prathna T. C., Mathew L., Chandrasekaran N., Raichur A. M., and Mukherjee A. Biomimetic synthesis of nanoparticles: science, technology & applicability. In Biomimetics Learning from Nature (InTech, London, UK, 2010). doi: 10.5772/8776
  50. Bromley K. M., Patil A. J., Perriman A. W., Stubbs G., and Mann S. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles, J. Mater. Chem., 18, 4796–4801 (2008). doi: 10.1039/b809585
  51. Ahiwale S. S., Bankar A. V., Tagunde S., and Kapadnis B. P. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Ind. J. Microbiol., 57 (2), 188–194 (2017). doi: 10.1007/s12088-017-0640-x
  52. Dhuper S., Panda D., and Nayak P. L. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends J. Nanotech. App., 13 (2), 16–22 (2012).
  53. Ahmad N., Sharma S. M. K., Alam M. K., Singh V. N., Shamsi S. F., Mehta B. R., and Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 81 (1), 81–86 (2010). doi: 10.1016/j.colsurfb.2010.06.029
  54. Bankar A., Joshi B., Kumar A. R., and Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B, 80 (1), 45–50 (2010). doi: 10.1016/j.colsurfb.2010.05.029
  55. Pandey A. and Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem., 2 (5), 115–119 (2014).
  56. Belokurov S. S., Narkevich I. A., Flisyuk E. V., Kaukhova I. E., and Aroyan M. V. Modern extraction methods for medicinal plant raw material (Review). Pharm. Chem. J., 53, 559–563 (2019). doi: 10.1007/s11094-019-02037-5
  57. Dekebo A. Introductory chapter: plant extracts. In: Plant Extracts (IntechOpen, 2019). doi: 10.5772/intechopen.79069
  58. Zhang Q.-W., Lin L.-G., and Ye W.-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med., 13, 20 (2018). doi: 10.1186/s13020-018-0177-x
  59. Schlosser S. K. and Mart´ak R. Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA. Sep. Purif. Technol., 41 (3), 237–266 (2005). doi: 10.1016/j.seppur.2004.07.019
  60. Azwanida N. N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 4, 3 (2015). doi: 10.4172/2167-0412.1000196
  61. Bhat A. R., Najar M. H., Dongre R. S., and Akhter M. S. Microwave assisted synthesis of Knoevenagel Derivatives using water as green solvent. Curr. Res. Green Sustain. Chem., 3, 100008 (2020). doi: 10.1016/j.crgsc.2020.06.001
  62. Rao S. S., Saptami K., Venkatesan J., and Rekha P. D. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity. Int. J. Biol. Macromol., (2020). doi: 10.1016/j.crgsc.2020.06.001
  63. Trusheva B., Trunkova D., and Bankova V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J., 1, 13 (2007). doi: 10.1186/1752-153X-1-13
  64. Oroian M., Dranca F., and Ursachi F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. J. Food Sci. Technol., 57 (1), 70–78 (2020). doi: 10.1007/s13197-019-04031-x
  65. Ferioli F., Giambanelli E., D'Alessandro V., and D'Antuono L. F. Comparison of two extraction methods (high pressure extraction vs. maceration) for the total and relative amount of hydrophilic and lipophilic organosulfur compounds in garlic cloves and stems. An application to the Italian ecotype “Aglio Rosso di Sulmona” (Sulmona Red Garlic). Food Chem., 312, 126086 (2020). doi: 10.1016/j.foodchem.2019.126086
  66. Altemimi A., Lakhssassi N., Baharlouei A., Watson D. G., and Lightfoot D. A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6 (4), 42 (2017). doi: 10.3390/plants6040042
  67. Saranya P. and Premalatha S. Biosynthesis and characterization of gold nanoparticles using leaves extract of Piliostigma thonningii and their antimicrobial activity. Int. J. Adv. Res. Biol. Sci., 3 (7), 75–84 (2016).
  68. Elia P., Zach R., Hazan S., Kolusheva S., Porat Z., and Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed., 9 (1), 4007–4021 (2014). doi: 10.2147/IJN.S57343
  69. Javed R., Zia M., Naz S., Aisida S. O., Ain N. U., and Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnol., 18 (1), 172 (2020). doi: 10.1186/s12951-020-00704-4
  70. Mikhailova E. O. Gold nanoparticles: biosynthesis and potential of biomedical application. J. Funct. Biomater., 12 (4), 70 (2021). doi: 10.3390/jfb12040070
  71. Sani A., Cao C., and Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep., 26, 100991 (2021). doi: 10.1016/j.bbrep.2021.100991
  72. Roy A. Plant derived silver nanoparticles and their therapeutic applications. Curr. Pharm. Biotechnol., 22 (14), 1834–1847 (2021). doi: 10.2174/1389201021666201027155708
  73. Raina S., Roy A., and Bharadvaja N. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ. Nanotechnol., Monitoring & Management, 13, 100278 (2020). doi: 10.1016/j.enmm.2019.100278
  74. Mittal S. and Roy A. Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In: Photocatalytic Degradation of Dyes (Elsevier, Amsterdam, Netherlands, 2021), pp. 287–308. doi: 10.1016/B978-0-12-823876-9.00009-3
  75. Verma A., Roy A., and Bharadvaja N. Remediation of heavy metals using nanophytoremediation. In: Advanced Oxidation Processes for Effluent Treatment Plants (Elsevier, Amsterdam, Netherlands, 2021), pp. 273–296. doi: 10.1016/B978-0-12-821011-6.00013-X
  76. Roy A. and Bharadvaja N. Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biomimetic and Nanobiomaterials, 8 (2), 130–140 (2019). doi: 10.1680/jbibn.18.00036
  77. Roy A. and Bharadvaja N. Silver nanoparticles synthesis from a pharmaceutically important medicinal plant Plumbago zeylanica. MOJ Bioequivalence & Bioavailability, 3 (5), 46 (2017). doi: 10.15406/mojbb.2017.03.00046
  78. Tran N., Mir A., Mallik D., Sinha A., Nayar S., and Webster T. J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed., 5, 277–283 (2010). doi: 10.2147/ijn.s9220
  79. Liu P., Duan W., Wang Q., and Li X., The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf. B Biointerfaces, 78 (2), 171–176 (2010). doi: 10.1016/j.colsurfb.2010.02.024
  80. Sravanthi M., Kumar D. M., Usha B., Ravichandra M., Rao M. M., and Hemalatha K. P., Biological synthesis and characterization of copper oxide nanoparticles using antigonon leptopus leaf extract and their antibacterial activity. Int. J. Adv. Res., 4 (8), 589–602 (2016). doi: 10.21474/IJAR01/1251
  81. Siddiqi K. S. and Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett., 11 (1), 482 (2016). doi: 10.1186/s11671-016-1695-z
  82. Lloyd J. R., Byrne J. M., and Coker V. S. Biotechnological synthesis of functional nanomaterials. Curr. Opin. Biotechnol., 22 (4), 509–515 (2011). doi: 10.1016/j.copbio.2011.06.008
  83. Nguyen V. H. and Shim J. J. Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites. J. Spectrosc., 2015, 297804 (2015). doi: 10.1155/2015/297804
  84. Dhandapani P., Maruthamuthu S., and Rajagopal G., Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J. Photochem. Photobiol. B, 110, 43–49 (2012). doi: 10.1016/j.jphotobiol.2012.03.003
  85. Sun S., Murray C. B., Weller D., Folks L., and Moser A., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 287 (5460), 1989–1992 (2000). doi: 10.1126/science.287.5460.1989
  86. Anjum S. and Abbasi B. H. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa. Int. J. Nanomed., 11, 1663 (2016). doi: 10.2147/IJN.S105532
  87. Giljohann D. A., Seferos D. S., Daniel W. L., Massich M.D., Patel P. C., and Mirkin C. A., Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition., 49 (19), 3280–3294 (2010). doi: 10.1002/anie.200904359
  88. Pereira L., Mehboob F., Stams A. J. M., Mota M. M., Rijnaarts H. H. M., and Alves M. M., Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit. Rev. Biotechnol., 35 (1), 114–128 (2015). doi: 10.3109/07388551.2013.819484
  89. Dhiman M., Sharma L., Singh A., and Sharma M. M. Biosynthesized nanomaterials: Hope for the resolution of societal problems. In: Biological Synthesis of Nanoparticles and Their Applications, Ed. by L. Karthik, A. V. Kirthi, S. Ranjan, and V. M. Srinivasan (CRC Press, 2020), pp. 233–256. doi: 10.1201/9780429265235-18
  90. Kumar V. and Yadav S. K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol., 84, 151–157 (2009). doi: 10.1002/jctb.2023
  91. Groning R., Breitkreutz J., Baroth V., and Muller R. S. Nanoparticles in plant extracts: factors which influence the formation of nanoparticles in black tea infusions. Pharmazie, 56 (10), 790–792 (2001). PMID: 11683125
  92. Tang D., Yuan R., and Chai Y. Ligand-functionalized core-shell Ag–Au nanoparticles label-free amperometricimmunbiosensor. Biotechnol. Bioeng., 94 (5), 996–1004 (2006). doi: 10.1002/bit.20922
  93. Paciotti G. F., Myer L., Weinreich D., Goia D., Pavel N., McLaughlin R. E. and Tamarkin L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 11 (3), 169–183 (2004). doi: 10.1080/10717540490433895
  94. Zheng D., Hu C., Gan T., Dang X., and Hu S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens. Actuators B Chem., 148 (1), 247–252 (2010). doi: 10.1016/j.snb.2010.04.031
  95. Syed A., Raja R., Kundu G. C., Gambhir S. and Ahmad A. Extracellular biosynthesis of monodispersed gold nanoparticles, their characterization, cytotoxicity assay, biodistribution and conjugation with the anticancer drug doxorubicin. Nanomed. Nanotechnol., 4 (1), 156 (2013). doi: 10.4172/2157-7439.1000155
  96. Malathi S., Balakumaran M. D., Kalaichelvan P. T., and Balasubramanian S. Green synthesis of gold nanoparticles for controlled delivery. Adv. Mater. Lett., 4 (12), 933–940 (2013). doi: 10.5185/amlett.2013.5477
  97. Bahrami B., Hojjat-Farsangi M., Mohammadi H., Anvari E., Ghalamfarsa G., Yousefi M., and Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 190, 64–83 (2017). doi: 10.1016/j.imlet.2017.07.015
  98. Thakuria A., Kataria B., and Gupta D. Nanoparticlebased methodologies for targeted drug delivery—an insight. J. Nanoparticle Res., 23, 87 (2021). doi: 10.1007/s11051-021-05190-9
  99. Hampp E., Botah R., Odusanya O. S., Anuku N., Malatesta K. A., and Soboyejo W. O. Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. J. Mater. Res., 27 (22), 2891–2901 (2012). doi: 10.1557/jmr.2012.317
  100. D’Acunto M., Cioni P., Gabellieri E., and Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology, 32, 192001 (2021). doi: 10.1088/1361-6528/abe1ed
  101. Shipway A. N., Katz E., and Willner I., Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Angew. Chemie, 39, 19–52 (2000). doi: 10.1002/1439-7641(20000804)1:1<18
  102. Siciliano G., Alsadig A., Chiriaco M. S., Turco A., Foscarini A., Ferrara F., Gigli G., Primiceri E. Beyond traditional biosensors: recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta, 268 (1), 125280 (2024). doi: 10.1016/j.talanta.2023.125280
  103. Zhao J., Bo B., Yin Y.-M., and Li G.-X. Gold nanoparticlesbased biosensors for biomedical application. Nano LIFE, 02 (04), 1230008 (2012). doi: 10.1142/s1793984412300087
  104. Qin L., Zeng G., Lai C., Huang D., Xu P., Zhang Ch., Cheng M., Liu X., Liu Sh., B. Li, and Yi H. “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord. Chem. Rev., 359, 1–31 (2018). doi: 10.1016/j.ccr.2018.01.006
  105. Wang K., Zhang W., Zhang X., Hu X., Chang Sh., and Zhang H. Highly sensitive gold nanoparticles-DNA nanosensor for γ-radiation detection. ACS Appl. Mater. Interfaces, 12 (37), 42403–42409 (2020). doi: 10.1021/acsami.0c12234
  106. Muthuvel K., Adavallan B. K., and Krishnakumar N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr., 4 (2), 325–332 (2014). doi: 10.1016/j.bionut.2014.03.004
  107. Naeem H., Ajmal M., Muntha S., Ambreen J., and Siddiq M. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants. RSC Advances, 8 (7), 3599–3610 (2018). doi: 10.1039/C7RA12030C
  108. Weir A., Westerhoff P., Fabricius L., Hristovski K., and Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 46 (4), 2242–2250 (2012). doi: 10.1021/es204168d
  109. Pereda M., Marcovich N. E., and Ansorena M. R. Nanotechnology in food packaging applications: barrier materials, antimicrobial agents, sensors, and safety assessment. In: Handbook of ecomaterials, Ed. by L. Martinez, O. Kharissova, and B. Kharisov (Springer, 2018). doi: 10.1007/978-3-319-68255-6_30
  110. Oliveira H. C., Stolf-Moreira R., Martinez C. B. R., Grillo R., de Jesus M. B., and Fraceto L. F. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One, 10 (7), e0132971 (2015). doi: 10.1371/journal.pone.0132971

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».