Effects of Macromolecular Crowding in Erythrocyte Cytoplasm

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using Raman spectroscopy, fluorescence spectroscopy, and time-correlated single-photon counting, it was shown that increasing the incubation temperature of human erythrocytes enhances the homogeneity of hemoglobin distribution in the cytoplasm and reduces globin molecule packing density. This likely results from the cellular “macromolecular crowding” effect. Observed conformational changes are specific to intracellular Hb and independent of the plasma membrane surface potential. Multiple pools of hemoglobin with varying structure and dynamics are proposed, they form clusters, creating heterogeneous hemoglobin distribution. The role of these effects in oxygen transport and regulatory signaling is discussed.

About the authors

O. V Slatinskaya

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

E. Yu Parshina

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

A. I Yusipovich

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

N. A Brazhe

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

A. B Rubin

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

G. V Maksimov

Department of Biology, Lomonosov Moscow State University; University of Science and Technology MISIS

Email: gmaksimov@mail.ru
Moscow, Russia; Moscow, Russia

References

  1. Ellis R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol., 11 (1), 114–119 (2001). doi: 10.1016/S0959-440X(00)00172-X
  2. Kuznetsova I. M., Turoverov K. K., and Uversky V. N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci., 15 (12), 23090–23140 (2014). doi: 10.3390/ijms151223090
  3. Luneva O. G., Sidorenko S. V., Ponomarchuk O. O., Tverskoy A. M., Cherkashin A. A., Rodnenkov O. V., Alekseeva N. V., Deev L. I., Maksimov G. V., Grygorczyk R., and Orlov S. N. Deoxygenation affects composition of membrane-bound proteins in human erythrocytes. Cell. Physiol. Biochem., 39 (1), 81–88 (2016). doi: 10.1159/000445607
  4. Dybas J., Bokamper M. J., Marzec K. M., and Mak P. J. Probing the structure-function relationship of hemoglobin in living human red blood cells. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 239, 118530 (2020). doi: 10.1016/j.saa.2020.118530
  5. Nikelshparg E. I., Baizhumanov A. A., Bochkova Z. V., Novikov S. M., Yakubovsky D. I., Arsenin A. V., and Brazhe N. A. Detection of hypertension-induced changes in erythrocytes by SERS nanosensors. Biosensors, 12 (1), 32 (2022). doi: 10.3390/bios12010032
  6. Kuleshova I. D., Zaripov P. I., Poluektov Y. M., Anashkina A. A., Kaluzhny D. N., Parshina E. Y., Maksimov G. V., Mitkevich V. A., Makarov A. A., and Petrushanko I. Y. Changes in hemoglobin properties in complex with glutathione and after glutathionylation. Int. J. Mol. Sci., 24 (17), 13557 (2023). doi: 10.3390/ijms241713557
  7. Artmann G. M., Kelemen C., Porst D., Buldt G., and Chien S. Temperature transitions of protein properties in human red blood cells. Biophys. J., 75 (6), 3179–3183 (1998). doi: 10.1016/S0006-3495(98)77759-8
  8. Doster W. and Longeville S. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells. Biophys. J., 93 (4), 1360–1368 (2007). doi: 10.1529/biophysj.106.097956
  9. Stadler A. M., Digel I., Artmann G. M., Embs J. P., Zacca, G., and Buldt G. Hemoglobin dynamics in red blood cells: correlation to body temperature. Biophys. J., 95 (11), 5449–5461 (2008). doi: 10.1529/biophysj.108.138040
  10. Minton A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem., 276 (14), 10577–10580 (2001). doi: 10.1074/jbc.R100005200
  11. Parshina E. Y., Yusipovich A. I., Platonova A. A., Grygorczyk R., Maksimov G. V., and Orlov S. N. Thermal inactivation of volume-sensitive K+, Cl− cotransport and plasma membrane relief changes in human erythrocytes. Pflug. Arch. – Eur. J. Physiol., 465, 977–983 (2013). doi: 10.1007/s00424-013-1221-4
  12. Vlasov A. V., Maliar N. L., Bazhenov S. V., Nikelshparg E. I., Brazhe N. A., Vlasova A. D., and Gordeliy V. I. Raman scattering: from structural biology to medical applications. Crystals, 10 (1), 38 (2020). doi: 10.3390/cryst10010038
  13. Li-Chan E., Nakai S., and Hirotsuka M. Raman spectroscopy as a probe of protein structure in food systems In: Protein structure-function relationships in foods, Ed. By R. Y. Yada, R. L. Jackman, and J. L. Smith (Springer, Boston, USA, 1994), pp. 163–197. doi: 10.1007/978-1-4615-2670-4_8
  14. Wallach D. F., Verma S. P., and Fookson, J. Application of laser Raman and infrared spectroscopy to the analysis of membrane structure. Rev. Biomembr., 559 (2–3), 153–208 (1979). doi: 10.1016/0304-4157(79)90001-7
  15. Wilson W. W., Wade M. M., Holman S. C., and Champlin F. R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods, 43 (3), 153–164 (2001). doi: 10.1016/S0167-7012(00)00224-4
  16. Gryzunov Y. A., Syrejshchikova T. I., Komarova M. N., Misionzhnik E. Y., Uzbekov M. G., Molodetskich A. V., Dobretsov G. E., and Yakimenko M. N. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 448 (1–2), 478–482 (2000). doi: 10.1016/S0168-9002(99)00720-2
  17. Slatinskaya O. V., Zaripov P. I., Brazhe N. A., Petrushanko I. Y., and Maksimov G. V. Changes in the conformation and distribution of hemoglobin in the erythrocyte upon inhibition of Na+/K+-ATPase activity. Biophysics, 67 (5), 726–733 (2022). doi: 10.1134/S0006350922050189
  18. Slatinskaya O. V., Brazhe N. A., Orlov S. N., and Maksimov G. V. The role of extracellular Ca2+ in regulating the distribution and conformation of hemoglobin in erythrocytes. Biochemistry (Moscow), Suppl. Ser. A: Membrane and Cell Biology, 15 (3), 230–238 (2021). doi: 10.1134/S1990747821030090
  19. Cheng Y., Lin H., Xue D., Li R., and Wang K. Lanthanide ions induce hydrolysis of hemoglobin-bound 2, 3-diphosphoglycerate (2, 3-DPG), conformational changes of globin and bidirectional changes of 2, 3-DPG-hemoglobin’s oxygen affinity. Biochim. Biophys. Acta, 1535 (2), 200–216 (2001). doi: 10.1016/S0925-4439(00)00100-9
  20. Quds R., Hashmi M. A., Iqbal Z., and Mahmood R. Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 280, 121503 (2022). doi: 10.1016/j.saa.2022.121503
  21. Gryczynski Z., Tenenholz T., and Bucci E. Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator, Biophys. J., 63 (3), 648–653 (1992). DOI: 0006-3495/92/09/648/06
  22. He W., Dou H., Li Z., Wang X., Wang L., Wang R., and Chang J. Investigation of the interaction between five alkaloids and human hemoglobin by fluorescence spectroscopy and molecular modeling. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 123, 176–186 (2014). doi: 10.1016/j.saa.2013.12.059
  23. Makarska-Bialokoz M. (2017). Analysis of the binding interaction in uric acid–Human hemoglobin system by spectroscopic techniques. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 178, 47–54 (2017). doi: 10.1016/j.saa.2017.01.063
  24. Sreerama N. and Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 287 (2), 252–260 (2000). doi: 10.1006/abio.2000.4880
  25. Fa H., Wang B., Zhang Y., Zhu Y., Song B., Xu H., Zhai Yu., Qiao M., and Sun F. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nature Commun., 12 (1), 7257 (2021). doi: 10.1038/s41467-021-27596-8
  26. Mohandas N. and Gallagher P. G. Red cell membrane: past, present, and future. Blood, 112 (10), 3939–3948. (2008). doi: 10.1182/blood-2008-07-161166
  27. Paschenko V. Z., Gorokhov V. V., Korvatovsky B. N., Knox P. P., Grishanova N. P., and Goryachev S. N. A study of the temperature dependence of tryptophan fluorescence lifetime in the range of –170 to +20°С in various solvents. Biophysics, 66 (3), 385–394 (2021). doi: 10.1134/S0006350921030143
  28. Maksimov E. G., Sluchanko N. N., Slonimskiy Y. B., Slutskaya E. A., Stepanov A. V., Argentova-Stevens A. M., Shirshin E. A., Tsoraev G. V., Klementiev K. E., Slatinskaya O. V., Lukashev E. P., Friedrich T., Paschenko V. Z., and Rubin A. B.The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci. Rep., 7 (1), 15548 (2017). doi: 10.1038/s41598-017-15520-4
  29. Hasan S. and Naeem A. Consequence of macromolecular crowding on aggregation propensity and structural stability of haemoglobin under glycating conditions. Int. J. Biol. Macromol., 162, 1044–1053 (2020). doi: 10.1016/j.ijbiomac.2020.06.127

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).