Effects of Macromolecular Crowding in Erythrocyte Cytoplasm
- Autores: Slatinskaya O.V1, Parshina E.Y.1, Yusipovich A.I1, Brazhe N.A1, Rubin A.B1, Maksimov G.V1,2
-
Afiliações:
- Department of Biology, Lomonosov Moscow State University
- University of Science and Technology MISIS
- Edição: Volume 70, Nº 2 (2025)
- Páginas: 305-313
- Seção: Cell biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/292982
- DOI: https://doi.org/10.31857/S0006302925020098
- EDN: https://elibrary.ru/KZDUNE
- ID: 292982
Citar
Resumo
Palavras-chave
Sobre autores
O. Slatinskaya
Department of Biology, Lomonosov Moscow State UniversityMoscow, Russia
E. Parshina
Department of Biology, Lomonosov Moscow State UniversityMoscow, Russia
A. Yusipovich
Department of Biology, Lomonosov Moscow State UniversityMoscow, Russia
N. Brazhe
Department of Biology, Lomonosov Moscow State UniversityMoscow, Russia
A. Rubin
Department of Biology, Lomonosov Moscow State UniversityMoscow, Russia
G. Maksimov
Department of Biology, Lomonosov Moscow State University; University of Science and Technology MISIS
Email: gmaksimov@mail.ru
Moscow, Russia; Moscow, Russia
Bibliografia
- Ellis R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol., 11 (1), 114–119 (2001). doi: 10.1016/S0959-440X(00)00172-X
- Kuznetsova I. M., Turoverov K. K., and Uversky V. N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci., 15 (12), 23090–23140 (2014). doi: 10.3390/ijms151223090
- Luneva O. G., Sidorenko S. V., Ponomarchuk O. O., Tverskoy A. M., Cherkashin A. A., Rodnenkov O. V., Alekseeva N. V., Deev L. I., Maksimov G. V., Grygorczyk R., and Orlov S. N. Deoxygenation affects composition of membrane-bound proteins in human erythrocytes. Cell. Physiol. Biochem., 39 (1), 81–88 (2016). doi: 10.1159/000445607
- Dybas J., Bokamper M. J., Marzec K. M., and Mak P. J. Probing the structure-function relationship of hemoglobin in living human red blood cells. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 239, 118530 (2020). doi: 10.1016/j.saa.2020.118530
- Nikelshparg E. I., Baizhumanov A. A., Bochkova Z. V., Novikov S. M., Yakubovsky D. I., Arsenin A. V., and Brazhe N. A. Detection of hypertension-induced changes in erythrocytes by SERS nanosensors. Biosensors, 12 (1), 32 (2022). doi: 10.3390/bios12010032
- Kuleshova I. D., Zaripov P. I., Poluektov Y. M., Anashkina A. A., Kaluzhny D. N., Parshina E. Y., Maksimov G. V., Mitkevich V. A., Makarov A. A., and Petrushanko I. Y. Changes in hemoglobin properties in complex with glutathione and after glutathionylation. Int. J. Mol. Sci., 24 (17), 13557 (2023). doi: 10.3390/ijms241713557
- Artmann G. M., Kelemen C., Porst D., Buldt G., and Chien S. Temperature transitions of protein properties in human red blood cells. Biophys. J., 75 (6), 3179–3183 (1998). doi: 10.1016/S0006-3495(98)77759-8
- Doster W. and Longeville S. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells. Biophys. J., 93 (4), 1360–1368 (2007). doi: 10.1529/biophysj.106.097956
- Stadler A. M., Digel I., Artmann G. M., Embs J. P., Zacca, G., and Buldt G. Hemoglobin dynamics in red blood cells: correlation to body temperature. Biophys. J., 95 (11), 5449–5461 (2008). doi: 10.1529/biophysj.108.138040
- Minton A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem., 276 (14), 10577–10580 (2001). doi: 10.1074/jbc.R100005200
- Parshina E. Y., Yusipovich A. I., Platonova A. A., Grygorczyk R., Maksimov G. V., and Orlov S. N. Thermal inactivation of volume-sensitive K+, Cl− cotransport and plasma membrane relief changes in human erythrocytes. Pflug. Arch. – Eur. J. Physiol., 465, 977–983 (2013). doi: 10.1007/s00424-013-1221-4
- Vlasov A. V., Maliar N. L., Bazhenov S. V., Nikelshparg E. I., Brazhe N. A., Vlasova A. D., and Gordeliy V. I. Raman scattering: from structural biology to medical applications. Crystals, 10 (1), 38 (2020). doi: 10.3390/cryst10010038
- Li-Chan E., Nakai S., and Hirotsuka M. Raman spectroscopy as a probe of protein structure in food systems In: Protein structure-function relationships in foods, Ed. By R. Y. Yada, R. L. Jackman, and J. L. Smith (Springer, Boston, USA, 1994), pp. 163–197. doi: 10.1007/978-1-4615-2670-4_8
- Wallach D. F., Verma S. P., and Fookson, J. Application of laser Raman and infrared spectroscopy to the analysis of membrane structure. Rev. Biomembr., 559 (2–3), 153–208 (1979). doi: 10.1016/0304-4157(79)90001-7
- Wilson W. W., Wade M. M., Holman S. C., and Champlin F. R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods, 43 (3), 153–164 (2001). doi: 10.1016/S0167-7012(00)00224-4
- Gryzunov Y. A., Syrejshchikova T. I., Komarova M. N., Misionzhnik E. Y., Uzbekov M. G., Molodetskich A. V., Dobretsov G. E., and Yakimenko M. N. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 448 (1–2), 478–482 (2000). doi: 10.1016/S0168-9002(99)00720-2
- Slatinskaya O. V., Zaripov P. I., Brazhe N. A., Petrushanko I. Y., and Maksimov G. V. Changes in the conformation and distribution of hemoglobin in the erythrocyte upon inhibition of Na+/K+-ATPase activity. Biophysics, 67 (5), 726–733 (2022). doi: 10.1134/S0006350922050189
- Slatinskaya O. V., Brazhe N. A., Orlov S. N., and Maksimov G. V. The role of extracellular Ca2+ in regulating the distribution and conformation of hemoglobin in erythrocytes. Biochemistry (Moscow), Suppl. Ser. A: Membrane and Cell Biology, 15 (3), 230–238 (2021). doi: 10.1134/S1990747821030090
- Cheng Y., Lin H., Xue D., Li R., and Wang K. Lanthanide ions induce hydrolysis of hemoglobin-bound 2, 3-diphosphoglycerate (2, 3-DPG), conformational changes of globin and bidirectional changes of 2, 3-DPG-hemoglobin’s oxygen affinity. Biochim. Biophys. Acta, 1535 (2), 200–216 (2001). doi: 10.1016/S0925-4439(00)00100-9
- Quds R., Hashmi M. A., Iqbal Z., and Mahmood R. Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 280, 121503 (2022). doi: 10.1016/j.saa.2022.121503
- Gryczynski Z., Tenenholz T., and Bucci E. Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator, Biophys. J., 63 (3), 648–653 (1992). DOI: 0006-3495/92/09/648/06
- He W., Dou H., Li Z., Wang X., Wang L., Wang R., and Chang J. Investigation of the interaction between five alkaloids and human hemoglobin by fluorescence spectroscopy and molecular modeling. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 123, 176–186 (2014). doi: 10.1016/j.saa.2013.12.059
- Makarska-Bialokoz M. (2017). Analysis of the binding interaction in uric acid–Human hemoglobin system by spectroscopic techniques. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 178, 47–54 (2017). doi: 10.1016/j.saa.2017.01.063
- Sreerama N. and Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 287 (2), 252–260 (2000). doi: 10.1006/abio.2000.4880
- Fa H., Wang B., Zhang Y., Zhu Y., Song B., Xu H., Zhai Yu., Qiao M., and Sun F. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nature Commun., 12 (1), 7257 (2021). doi: 10.1038/s41467-021-27596-8
- Mohandas N. and Gallagher P. G. Red cell membrane: past, present, and future. Blood, 112 (10), 3939–3948. (2008). doi: 10.1182/blood-2008-07-161166
- Paschenko V. Z., Gorokhov V. V., Korvatovsky B. N., Knox P. P., Grishanova N. P., and Goryachev S. N. A study of the temperature dependence of tryptophan fluorescence lifetime in the range of –170 to +20°С in various solvents. Biophysics, 66 (3), 385–394 (2021). doi: 10.1134/S0006350921030143
- Maksimov E. G., Sluchanko N. N., Slonimskiy Y. B., Slutskaya E. A., Stepanov A. V., Argentova-Stevens A. M., Shirshin E. A., Tsoraev G. V., Klementiev K. E., Slatinskaya O. V., Lukashev E. P., Friedrich T., Paschenko V. Z., and Rubin A. B.The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci. Rep., 7 (1), 15548 (2017). doi: 10.1038/s41598-017-15520-4
- Hasan S. and Naeem A. Consequence of macromolecular crowding on aggregation propensity and structural stability of haemoglobin under glycating conditions. Int. J. Biol. Macromol., 162, 1044–1053 (2020). doi: 10.1016/j.ijbiomac.2020.06.127
Arquivos suplementares
