Changes in the Structure and Peroxidase Activity of Cytochrome C in Its Interaction with Phosphatidic Acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative molecular investigation of the action of earlier little-studied phosphatidic acid and well-studied cardiolipin in their interaction with cytochrome C was carried out. Using spectrofluorimetry, close conformational changes in the cytochrome C active center were shown to occur during its interaction not only with cardiolipin, but also with phosphatidic acid. By means of an EPR assay, a significant enhancement of cytochrome C peroxidase activity during its interaction with cardiolipin and phosphatidic acid was demonstrated by formation of etoposide phenoxyl radical and luminol-dependent chemiluminescence. The assay indicated about 30% more pronounced changes in cytochrome C peroxidase activity in the presence of phosphatidic acid as compared to a similar effect of cardiolipin. At the same time, a close to intensity overwhelming recovery of the action of cardiolipin or phosphatidic acid was shown spectrophotometrically by cytochrome C reduction, which decreases by approximately 25% as compared to control phosphatidylcholinecontaining samples. Thus, phosphatidic acid can effectively change the cytochrome C confirmation and peroxidase activity as well effectively, and in peroxidase activity PA even surpasses cardiolipin. The obtained results may signify a high involvement of both cardiolipin and phosphatidic acid in the development of cytochrome С-mediated proapoptotic processes in mitochondria which, in its turn, may lay become foundation for a new direction in regulatory lipidomics.

About the authors

V. V Volkov

Pirogov Russian National Research Medical University

Moscow, Russia

S. P Konukhova

Pirogov Russian National Research Medical University

Moscow, Russia

A. V Blagova

Pirogov Russian National Research Medical University

Moscow, Russia

G. O Stepanov

Pirogov Russian National Research Medical University

Email: stepanov_go@rsmu.ru
Moscow, Russia

Yu. A Vladimirov

Pirogov Russian National Research Medical University

Moscow, Russia

A. N Osipov

Pirogov Russian National Research Medical University

Moscow, Russia

References

  1. Fiorucci L., Erba F., Santucci R., and Sinibaldi F. Cytochrome c interaction with cardiolipin plays a key role in cell apoptosis: Implications for human diseases. Symmetry, 14 (4), 767 (2022). doi: 10.3390/sym14040767
  2. Chertkova R. V., Firsov A. M., Brazhe N. A., Nikelshparg E. I., Bochkova Z. V., Bryantseva T. V., Semenova M. A., Baizhumanov A. A., Kotova E. A., Kirpichnikov M. P., Maksimov G. V., Antonenko Y. N., and Dolgikh D. A. Multiple mutations in the non-ordered red Ω-loop enhance the membrane-permeabilizing and peroxidaselike activity of cytochrome c. Biomolecules, 12, 665 (2022). doi: 10.3390/biom12050665
  3. Kagan V. E., Tyurin V. A., Jiang J., Tyurina Y. Y., Ritov V. B., Amoscato A. A., Osipov A. N., Belikova N. A., Kapralov A. A., Kini V., Vlasova I. I., Zhao Q., Zou M., Di P., Svistunenko D. A., Kurnikov I. V., and Borisenko G. G. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol., 1, 223–232 (2005). doi: 10.1038/nchembio727
  4. Kapralov A. A., Kurnikov I. V., Vlasova I. I., Belikova N. A., Tyurin V. A., Basova L. V., Zhao Q., Tyurina Y. Y., Jiang J., Bayir H., Vladimirov Y. A., and Kagan V. E. The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells. Biochemistry, 46, 14232–14244 (2007). doi: 10.1021/bi701237b
  5. Jemmerson R., Liu J., Hausauer D., Lam K.-P., Mondino A., and Nelson R. D. A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles. Biochemistry, 38, 3599–3609 (1999). doi: 10.1021/bi9809268
  6. Quinn P. J. and Dawson R. M. C. Interactions of cytochrome c and [14C]-carboxymethylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin. Biochem. J., 115, 65–75 (1969). doi: 10.1042/bj1150065
  7. Osipov A. N., Stepanov G. O., Vladimirov Y. A., Kozlov A. V., and Kagan V. E. Regulation of cytochrome C peroxidase activity by nitric oxide and laser irradiation. Biochemistry (Moscow), 71, 1128–1132 (2006). doi: 10.1134/s0006297906100117
  8. Barber C. N., Huganir R. L., and Raben D. M. Phosphatidic acid-producing enzymes regulating the synaptic vesicle cycle: Role for PLD? Adv. Biol. Regul., 67, 141–147 (2018). doi: 10.1016/j.jbior.2017.09.009
  9. Stepanov G., Gnedenko O., Mol’nar A., Ivanov A., Vladimirov Y., and Osipov A. Evaluation of cytochrome c affinity to anionic phospholipids by means of surface plasmon resonance. FEBS Lett., 583, 97–100 (2009). doi: 10.1016/j.febslet.2008.11.029
  10. Boteva R., Zlateva T., Dorovska-Taran V., Visser A. J. W. G., Tsanev R., and Salvato B. Dissociation equilibrium of human recombinant interferon γ. Biochemistry, 35, 14825–14830 (1996). doi: 10.1021/bi9527597
  11. Zhan J., Zhang G., Chai X., Zhu Q., Sun P., Jiang B., Zhou X., Zhang X., and Liu M. NMR reveals the conformational changes of cytochrome C upon interaction with cardiolipin. Life, 11, 1031 (2021). doi: 10.3390/life11101031
  12. Kagan V. E., Jiang J., Bayir H., and Stoyanovsky D. A. Targeting nitroxides to mitochondria: location, location, location, and …concentration: Highlight commentary on “Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: Role of mitochondrial superoxide” Free Radic. Biol. Med., 43, 348–350 (2007). doi: 10.1016/j.freeradbiomed.2007.03.030
  13. Kagan V. E., Tyurina Y. Y., Sun W. Y., Vlasova I. I., DarH., Tyurin V. A., Amoscato A. A., Mallampalli R., Van Der Wel P. C. A., He R. R., Shvedova A. A., Gabrilovich D. I., Bayir H. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radic. Biol. Med., 147, 231–241 (2020). doi: 10.1016/j.freeradbiomed.2019.12.028
  14. Firsov A. M., Kotova E. A., Korepanova E. A., Osipov A. N., and Antonenko Y. N. Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex. Biochim. Biophys. Acta – Biomembranes, 1848, 767–774 (2015). doi: 10.1016/j.bbamem.2014.11.027
  15. Puchkov M. N., Vassarais R. A., Korepanova E. A., and Osipov A. N. Cytochrome c produces pores in cardiolipincontaining planar bilayer lipid membranes in the presence of hydrogen peroxide. Biochim. Biophys. Acta – Biomembranes, 1828, 208–212 (2013). doi: 10.1016/j.bbamem.2012.10.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».