Study of the Distribution of Subcellular Structures in Algae Cells Using Optical Laser Tomography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the developed method of optical laser tomography, the possibility of recording and analyzing the threedimensional distribution of subcellular organelles in eukaryotic algae (C. reinhardtii) was proved. The method allows analyzing the redistribution of subcellular organelles (nucleus, chloroplast) in consecutive slices of one cell in norm and under the influence of modifiers of its functional state. According to the authors, the proposed approach will allow not only to study the dynamics of distribution of intracellular structures (nucleus, thylakoids, mitochondria, etc.), but also changes of a single structure during cell functioning.

About the authors

A. A Samoilenko

All-Russian Research Institute for Optical-Physical Measurements

Moscow, Russia

G. G Levin

All-Russian Research Institute for Optical-Physical Measurements

Moscow, Russia

A. A Volgusheva

Lomonosov Moscow State University

Moscow, Russia

A. P Kazakov

Lomonosov Moscow State University

Moscow, Russia

G. V Maksimov

Lomonosov Moscow State University; National University of Science and Technology “MISIS”

Email: gmaksimov@mail.ru
Moscow, Russia; Moscow, Russia

References

  1. Паршина Е. Ю., Самойленко А. А., Максимов Г. В., Юсипович А. И., Лобакова Е. С., Хе Я. и Левин Г. Г. Комплексный подход для исследования морфологии и распределения пигментов в клетке водоросли. Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки, № 2 (113), 129–148 (2024). EDN: NBOFMH
  2. Parshina E. Y., Yusipovich A. I., Brazhe A. R., Silicheva M. A., and Maksimov G. V. Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity. J. Biol. Phys., 45 (4), 367−377 (2019). doi: 10.1007/s10867-019-09533-53
  3. Yusipovich A. I., Parshina E. Yu, Baizhumanov A. A., Pirutin S. K., Ivanov A. D., Minaev V. L., Levin G. G., and Maksimov G. V. Use of a laser interference microscope for estimating fluctuations and the equivalent elastic constant of cell membranes. Instruments and Experimental Techniques, 64 (6), 877 (2021). doi: 10.1134/S0020441221060129
  4. Faist J., Capasso F., Sivco D. L., Sirtori C., Hutchinson A. L., and Cho A. Y. Quantum cascade laser. Science, 264 (5158), 553–556 (1994). doi: 10.1126/science.264.5158.553
  5. Kuepper C., Kallenbach-Thieltges A., Juette H., Tannapfel A., Groserueschkamp F., and Gerwert K. Quantum Cascade laser-based infrared microscopy for labelfree and automated cancer classification in tissue sections. Sci. Rep., 8 (1), 7717 (2018). doi: 10.1038/s41598-018-26098-w
  6. Betzig E., Lewis A., Harootunian A., Isaacson M., and Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J., 49 (1), 269–279 (1986).
  7. Kawata S. and Inouye Y. Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy, 57, 313–317 (1995).
  8. Mastel S., Govyadinov A. A., Maissen C., Chuvilin A., Berger A., and Hillenbrand R. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics, 5, 3372 (2018).
  9. Hauer B., Engelhardt A. P., and Taubner T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Opt. Express, 20 (12), 13173–13188 (2012).
  10. Zuo C., Sun J., Li J., Asundi A., and Chen Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Optics and Lasers in Engineering, 128, 106003 (2020). doi: 10.1016/j.optlaseng.2020.106003
  11. Li J., Chen Q., Zhang J., Zhang Z., Zhang Y., and Zuo C. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array. Optics and Lasers in Engineering, 95, 26–34 (2017). doi: 10.1016/j.optlaseng.2017.03.010
  12. Soto J. M., Rodrigo J. A., and Alieva T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express, 25, 15699–15712 (2017). doi: 10.1364/OE.25.015699
  13. Hamano R., Mayama S., and Umemura K. Localization analysis of intercellular materials of living diatom cells studied by tomographic phase microscopy. Appl. Phys. Lett., 120 (13), 133701 (2022). doi: 10.1063/5.0086165
  14. Levin G. G. Contemporary methods of optical tomography and holography. Meas. Tech., 48, 1103–1108 (2005). doi: 10.1007/s11018-006-0028-5
  15. Vishnyakov G. N. and Levin G. G. Linnik tomographic microscope for investigation of optically transparent objects. Meas. Tech., 41, 906–911 (1998).
  16. Minaev V. L. and Yusipovich A. I. Use of an automated interference microscope in biological research. Meas. Tech., 55, 839–844 (2012). doi: 10.1007/s11018-012-0048-2
  17. Harris E. H. Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use (Acad. Press, San Diego, CA, 1989).
  18. Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol., 148, 350–382 (1987). doi: 10.1016/0076-6879(87)48036-1
  19. Gfeller R. P. and Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol., 75 (1), 212–218 (1984). doi: 10.1104/pp.75.1.212
  20. Amenabar I., Poly S., Nuansing W., Hubrich E. H., Govyadinov A. A., Huth F., Krutokhvostov R., Zhang L., Knez M., Heberle J., Bittner A. M., and Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun., 4, 2890 (2013). doi: 10.1038/ncomms3890
  21. Han Y., Han L., Yao Yu., Lia Ya., and Liu X. Key factors in FTIR spectroscopic analysis of DNA: the sampling technique, pretreatment temperature and sample concentration. Anal. Methods, 10, 2436–2443 (2018). doi: 10.1039/C8AY00386F
  22. Yusipovich A. I., Berestovskaya Yu. Yu., Shutova V. V., Levin G. G., Gerasimenko L. M., Maksimov G. V., and Rubin A. B. New possibilities for the study of microbiological objects by laser interference microscopy. Meas. Tech., 55, 351–356 (2012). doi: 10.1007/s11018-012-9963-5
  23. Zhurina M. V., Kostrikina N. A., Parshina E. Yu., Strelkova E. A., Yusipovich A. I., Maksimov G. V., and Plakunov V. K. Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods. Microbiology, 82, 517–524 (2013). doi: 10.1134/S0026261713040164
  24. Yusipovich A. I., Berestovskaya Yu. Yu., Shutova V. V., Levin G. G., Gerasimenko L. M., Maksimov G. V., and Rubin A. B. New possibilities of studying microbial objects by laser interference microscopy. Biophysics, 56, 1063–1068 (2011). doi: 10.1134/S0006350911060224
  25. Wu Z., Sun Y., Matlock A., Liu J., Tian L., and Kamilov U. S. SIMBA: Scalable inversion in optical tomography using deep denoising priors. IEEE J. Selected Topics Signal Process., 14, 1163–1175 (2020).
  26. Merola F., Memmolo P., Miccio L., Mugnano M., and Ferraro P. Phase contrast tomography at lab on chip scale by digital holography. Methods, 136, 108–115 (2018). doi: 10.1016/j.ymeth.2018.01.003
  27. Jung J. H., Hong S. J., Kim H. B., Kim G., Lee M., Shin S., Lee S.-Y., Kim D.-J., Lee Ch.-G., and Park Y.-K. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci. Rep., 8 (1), 6524 (2018). doi: 10.1038/s41598-018-24393-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).