Quantum-Chemical Modelling of Adenosine Triphosphate Hydrolysis in Water Medium
- Authors: Mukseev G.N1, Tikhonov A.N1
-
Affiliations:
- Department of Physics, Lomonosov Moscow State University
- Issue: Vol 70, No 2 (2025)
- Pages: 213-224
- Section: Molecular biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/292974
- DOI: https://doi.org/10.31857/S0006302925020012
- EDN: https://elibrary.ru/LAICOK
- ID: 292974
Cite item
Abstract
About the authors
G. N Mukseev
Department of Physics, Lomonosov Moscow State UniversityMoscow, Russia
A. N Tikhonov
Department of Physics, Lomonosov Moscow State University
Email: an_tikhonov@mail.ru
Moscow, Russia
References
- Kalсkar H. M. Biological phosphorylations. Development of concepts (Prentice-Hall, Inc. Inglewood Cliffs, New Jersey, 1969).
- Junge W. and Nelson N. ATP synthase. Annu. Rev. Biochem., 84 (1), 631–657 (2015). doi: 10.1146/annurev-biochem-060614-034124
- Nelson D. L. and Cox M. M. Lehninger principles of biochemistry, 7th ed. (W.H. Freeman & Co, N.-Y., 2017).
- Cohn M. and Hughes T. R. Jr. Nuclear magnetic resonance spectra of adenosine di- and triphosphate: II. Effect of complexing with divalent metal ions. J. Biol. Chem., 237 (1), 176–181 (1962).
- Boyer P. D. The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochim. Biophys. Acta −Bioenergetics, 1140 (3), 215–250 (1993). doi: 10.1016/0005-2728(93)90063-L
- Boyer P. D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem., 66 (1), 717–749 (1997). doi: 10.1146/annurev.biochem.66.1.717
- Boyer P. D. Catalytic site forms and controls in ATP synthase catalysis. Biochim. Biophys. Acta − Bioenergetics, 1458 (2–3), 252–262 (2000). doi: 10.1016/S0005-2728(00)00077-3
- Yoshida M., Muneyuki E., and Hisabori T. ATP synthase—a marvellous rotary engine of the cell. Nature Rev. Molecular Cell Biol., 2 (9), 669–677 (2001). doi: 10.1038/35089509
- Okimoto N., Yamanaka K., Ueno J., Hata M., Hoshino T., and Tsuda M. Theoretical studies of the ATP hydrolysis mechanism of myosin. Biophys. J., 81 (5), 2786–2794 (2001). doi: 10.1016/S0006-3495(01)75921-8
- Akola J. and Jones R. O. ATP hydrolysis in water – a density functional study. J. Phys. Chem. B, 107 (42), 11774–11783 (2003). doi: 10.1021/jp035538g
- Grigorenko B. L., Rogov A. V., and Nemukhin A. V. Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters. J. Phys. Chem. B, 110 (9), 4407–4412 (2006). doi: 10.1021/jp056395w
- Dittrich M., Hayashi S., and Schulten K. On the mechanism of ATP hydrolysis in F1-ATPase. Biophys. J., 85 (4), 2253–2266 (2003). doi: 10.1016/S0006-3495(03)74650-5
- Liao J. C., Sun S., Chandler D., and Oster G. The conformational states of Mg・ ATP in water. European Biophys. J., 33, 29–37 (2004). doi: 10.1007/s00249-003-0339-2
- Hu H. and Yang W. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu. Rev. Phys. Chem., 59 (1), 573–601 (2008). doi: 10.1146/annurev.physchem.59.032607.093618
- Tulub A. A. Molecular dynamics DFT: B3LYP study of guanosinetriphosphate conversion into guanosinemonophosphate upon Mg2+ chelation of α and β phosphate oxygens of the triphosphate tail. Phys. Chem. Chem. Phys., 8 (18), 2187–2192 (2006). doi: 10.1039/B517072A
- Tulub A. A. and Stefanov V. E. The effect of the oxidative properties of [Mg (H2O) 6] in the triplet and singlet states on the energetics of adenosine triphosphate cleavage. Russ. J. Inorg. Chem., 54 (7), 1127–1134 (2009). doi: 10.1134/S0036023609070213
- Harrison C. B. and Schulten K. Quantum and classical dynamics simulations of ATP hydrolysis in solution. J. Chem. Theory Comput., 8 (7), 2328–2335 (2012). doi: 10.1021/ct200886j
- Kobayashi E., Yura K., and Nagai Y. Distinct conformation of ATP molecule in solution and on protein. Biophysics, 9, 1–12 (2013). doi: 10.2142/biophysics.9.1
- Wang C., Huang W., and Liao J. L. QM/MM investigation of ATP hydrolysis in aqueous solution. J. Phys. Chem. B, 119 (9), 3720–3726 (2015). doi: 10.1021/jp512960e
- Buelens F. P., Leonov H., de Groot B. L., and Grubmuller H. ATP–magnesium coordination: protein structurebased force field evaluation and corrections. J. Chem. Theory Comput., 17 (3), 1922–1930 (2021). doi: 10.1021/acs.jctc.0c01205
- Car R. and Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 55 (22), 2471 (1985). doi: 10.1103/PhysRevLett.55.2471
- Harvey J. N., Żurek J., Pentikainen U., and Mulholland A. J. Comment on “Molecular dynamics DFT: B3LYP study of guanosinetriphosphate conversion into guanosinemonophosphate upon Mg2+ chelation of α and β phosphate oxygens of the triphosphate tail” by Alexander A. Tulub. Phys. Chem./Chem. Phys., 8 (45), 5366–5367 (2006). doi: 10.1039/B608855D
- Villa J. and Warshel A. Energetics and dynamics of enzymatic reactions. J. Phys. Chem. B, 105 (33), 7887–7907 (2001). doi: 10.1021/jp011048h
- Ikryannikova L. N., Ustynyuk L. Y., and Tikhonov A. N. DFT study of nitroxide radicals. 1. Effects of solvent on structural and electronic characteristics of 4-amino-2, 2, 5, 5-tetramethyl-3-imidazoline-N-oxyl. J. Phys. Chem. A, 108 (21), 4759–4768 (2004). doi: 10.1021/jp037943d
- Ikryannikova L. N., Ustynyuk L. Y., and Tikhonov A. N. DFT study of nitroxide radicals: explicit modeling of solvent effects on the structural and electronic characteristics of 4‐amino‐2, 2, 6, 6‐tetramethyl‐piperidine‐N‐oxyl. Magnet. Res. Chem., 48 (5), 337–349 (2010). doi: 10.1002/mrc.2585
- Liubimovskii S. O., Ustynyuk L. Y., and Tikhonov A. N. Superoxide radical scavenging by sodium 4, 5-dihydroxybenzene1, 3-disulfonate dissolved in water: Experimental and quantum chemical studies. J. Molec. Liquids, 333, 115810 (2021). doi: 10.1016/j.molliq.2021.115810
- Ustynyuk L. Y., Medvedeva V. A., Liubimovskii S. O., Ruuge E. K., and Tikhonov A. N. Interaction of magnesium ions with semiquinone radicals of tiron, an indicator of reactive oxygen species. Biophysics, 68 (6), 915–923 (2023). doi: 10.1134/S0006350923060192
- Avogadro: Molecular editor and visualization. URL: https://avogadro.cc/
- The ORCA program system / Version 5.0.1. URL: https://orcaforum.kofo.mpg.de/
- Perdew J. P., Burke K., and Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. letters, 77 (18), 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
- Weigend F. and Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 7 (18), 3297–3305 (2005). doi: 10.1039/B508541A
- Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., 8 (9), 1057–1065 (2006). doi: 10.1039/B515623H
- Laage D. and Hynes J. T. A molecular jump mechanism of water reorientation. Science, 311 (5762), 832–835 (2006). doi: 10.1126/science.1122154
- Python Software Foundation. Python Language Reference, version 3.11. URL: http://www.python.org
- Warshel A. Computer modeling of chemical reactions in enzymes and solutions. J. Biochem. Biophys. Methods, 26 (2–3), 241–243 (1991). doi: 10.1016/0165-022x(93)90048-s
- Allner O., Nilsson L., and Villa A. Magnesium ion–water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 8 (4), 1493–1502 (2012). doi: 10.1021/ct3000734
- Penkov N. V. and Penkova N. A. Key differences of the hydrate shell structures of ATP and MgATP revealed by terahertz time-domain spectroscopy and dynamic light scattering. J. Phys. Chem. B, 125 (17), 4375–4382 (2021). doi: 10.1021/acs.jpcb.1c02276
- Penkov N. V., Penkova N. A., and Lobyshev V. I. Special role of Mg2+ in the formation of the hydration shell of adenosine triphosphate. Physics of Wave Phenomena, 30 (5), 344–350 (2022). doi: 10.3103/S1541308X22050090
- Mulliken R. S. Electronic population analysis on LCAO–MO molecular wave functions. J. Chem. Phys., 23 (10), 1833–1840 (1955). doi: 10.1063/1.1740588
- Романовский Ю. М. и Тихонов А. Н. Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза – вращающийся молекулярный мотор. Успехи физ. наук, 180 (9), 931–956 (2010). doi: 10.3367/UFNr.0180.201009b.0931
- Blumenfeld L. A., Grosberg A. Y., and Tikhonov A. N. Fluctuations and mass action law breakdown in statistical thermodynamics of small systems. J. Chem. Phys., 95 (10), 7541–7547 (1991). doi: 10.1063/1.461380
- Fayer M. D. Dynamics of water interacting with interfaces, molecules, and ions. Acc. Chem. Res., 45 (1), 3–14 (2012). doi: 10.1021/ar2000088
- Hassanali A. A., Cuny J., Verdolino V., and Parrinello M. Aqueous solutions: state of the art in ab initio molecular dynamics. Philos. Trans. Roy. Soc. A: Math., Phys. Engineer. Sci., 372 (2011), 20120482 (2014). doi: 10.1098/rsta.2012.0482
- Laasonen K., Sprik M., Parrinello M., and Car R. “Ab initio” liquid water. J. Chem. Phys., 99 (11), 9080–9089 (1993). doi: 10.1063/1.465574
- Wei D. and Salahub D. R. A combined density functional and molecular dynamics simulation of a quantum water molecule in aqueous solution. Chem. Phys. Lett., 224 (34), 291–296 (1994). doi: 10.1016/0009-2614(94)00540-0
- Zhang Y., Liu H., and Yang W. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J. Chem. Phys., 112 (8), 3483–3492 (2000). doi: 10.1063/1.480503
- Podolsky R. J. and Morales M. F. The enthalpy change of adenosine triphosphate hydrolysis. J. Biol. Chem., 218 (2), 945–959 (1956). doi: 10.1016/S0021-9258(18)65857-0
- Gajewski E., Steckler D. K., and Goldberg R. N. Thermodynamics of the hydrolysis of adenosine 5'-triphosphate to adenosine 5'-diphosphate. J. Biol. Chem., 261 (27), 12733–12737 (1986). doi: 10.1016/S0021-9258(18)67153-4
- Buchachenko A. L. and Kuznetsov D. A. Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc., 130 (39), 12868–12869 (2008). doi: 10.1021/ja804819k
- Buchachenko A. L., Kouznetsov D. A., Breslavskaya N. N., and Orlova M. A. Magnesium isotope effects in enzymatic phosphorylation. J. Phys. Chem. B, 112 (8), 2548–2556 (2008). doi: 10.1021/jp710989d
Supplementary files
