Biophysical Basics of the Use of Isometric Exercises in the Rehabilitation of Patients after Hip Replacements
- Authors: Maksimova E.A1, Shevchenko V.I2, Akatov V.S1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Hospital of the Pushchino Scientific Center of the Russian Academy of Sciences
- Issue: Vol 70, No 1 (2025)
- Pages: 198-208
- Section: Medical biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/285400
- DOI: https://doi.org/10.31857/S0006302925010249
- EDN: https://elibrary.ru/LTNFKE
- ID: 285400
Cite item
Abstract
About the authors
E. A Maksimova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: maksimova.elena@inbox.ru
Pushchino, Russia
V. I Shevchenko
Hospital of the Pushchino Scientific Center of the Russian Academy of SciencesPushchino, Russia
V. S Akatov
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
References
- Park S., Min S., Park S. H., Yoo J., and Jee Y. S. Influence of isometric exercise combined with electromyostimulation on inflammatory cytokine levels, muscle strength, and knee joint function in elderly women with early knee osteoarthritis. Front. Physiol., 12, 688260 (2021). doi: 10.3389/fphys.2021.688260
- Khosrojerdi H., Tajabadi A., Amadani M., Akrami R., and Tadayonfar M. The effect of isometric exercise on pain severity and muscle strength of patients with lower limb fractures: A randomized clinical trial study. Med. Surg. Nurs. J., 7 (1), e68104 (2018). doi: 10.5812/msnj.68104
- Ojoawo A. O., Olaogun M. O., and Hassan M. A. Comparative effects of proprioceptive and isometric exercises on pain intensity and difficulty in patients with knee osteoarthritis: A randomised control study. Technol. Health Care, 24 (6), 853–863 (2016). doi: 10.3233/THC-161234
- Епифанов В. А. и Епифанов А. В. Лечебная физическая культура: учебное пособие (ГЭОТАР-Медиа, М., 2020). DOI: 1033029/9704-5576-0-2020-PHY-1-704
- Клинические рекомендации «Коксартроз» (утв. Минздравом России) (ЦЕНТРМАГ, М., 2024).
- Физическая и реабилитационная медицина: национальное руководство, под ред. Г. Н. Пономаренко ГЭОТАР-Медиа, М., 2020).
- Климовицкий В. Г., Климовицкий Р. В., Тяжелов А. А. и Гончарова Л. Е. Особенности работы мышц тазового пояса до и после эндопротезирования тазобедренного сустава. Обзор литературы. Травма, 2 (2019). URL: https://cyberleninka.ru/article/n/osobennosti-raboty-myshts-tazovogo-poyasa-doi-posle-endoprotezirovaniya-tazobedrennogo-sustavaobzor-literatury (дата обращения: 13.11.2024).
- Mikkelsen L. R., Mechlenburg I., Søballe K., Jørgensen L. B., Mikkelsen S., Bandholm T., and Petersen A. K. Effect of early supervised progressive resistance training compared to unsupervised home-based exercise after fasttrack total hip replacement applied to patients with preoperative functional limitations. A single-blinded randomised controlled trial. Osteoarthritis Cartilage, 22 (12), 2051–2058 (2014). doi: 10.1016/j.joca.2014.09.025
- Minns Lowe C. J., Barker K. L., Dewey M. E., and Sackley C. M. Effectiveness of physiotherapy exercise following hip arthroplasty for osteoarthritis: a systematic review of clinical trials. BMC Musculoskelet. Disord., 10, 98 (2009). doi: 10.1186/1471-2474-10-98
- Jensen C., Aagaard P., and Overgaard S. Recovery in mechanical muscle strength following resurfacing vs standard total hip arthroplasty e a randomised clinical trial. Osteoarthritis Cartilage, 19 (9), 1108–1116 (2011). doi: 10.1016/j.joca.2011.06.011
- Vissers M. M., Bussmann J. B., Verhaar J. A., Arends L. R., Furlan A. D., and Reijman M. Recovery of physical functioning after total hip arthroplasty: systematic review and meta-analysis of the literature. Phys. Ther., 91 (5), 615–629 (2011). doi: 10.2522/ptj.20100201
- Judd D. L., Dennis D. A., Thomas A. C., Wolfe P., Dayton M. R., and Stevens-Lapsley J. E. Muscle strength and functional recovery during the first year after THA. Clin. Orthop. Relat Res., 472 (2), 654–664 (2014). doi: 10.1007/s11999-013-3136-y
- Suetta C., Magnusson S. P., Rosted A., Aagaard P., Jakobsen A. K., Larsen L. H., Duus B., and Kjaer M. Resistance training in the early postoperative phase reduces hospitalization and leads to muscle hypertrophy in elderly hip surgery patients—a controlled, randomized study. J. Am. Geriatr. Soc., 52 (12), 2016–2022 (2004). doi: 10.1111/j.1532-5415.2004.52557.x
- Wigerstad-Lossing I., Grimby G., Jonsson T., Morelli B., Peterson L., and Renström P. Effects of electrical muscle stimulation combined with voluntary contractions after knee ligament surgery. Med. Sci. Sports Exerc., 20 (1), 93–98 (1988). doi: 10.1249/00005768-198802000-00014
- Вакуленко С. В. Эффективность применения упражнений изометрического характера у пациентов с дорсопатиями на этапе коррекции двигательного стереотипа: Дис. … канд. мед. наук (Национальный медицинский исследовательский центр реабилитации и курортологии, М., 2021).
- Тортора Дж. и Дерриксон Б. Анатомия, физиология: фундаментальные основы (МЕДПРОФ, М., 2017).
- Lac G. and Cavalié H. A rat model of progressive isometric strength training. Arch. Physiol. Biochem., 107 (2), 144–151 (1999). doi: 10.1076/apab.107.2.144.4337
- Hawley J. A., Hargreaves M., Joyner M. J., and Zierath J. R. Integrative biology of exercise. Cell, 159 (4), 738–749 (2014). doi: 10.1016/j.cell.2014.10.029
- Chin E. R. Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message. Exerc. Sport Sci. Rev., 38 (2), 76–85 (2010). doi: 10.1097/JES.0b013e3181d495d2
- Chin E. R. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J. Appl. Physiol., 99 (2), 414– 423 (2005). doi: 10.1152/japplphysiol.00015.2005
- Egan B. and Zierath J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab., 17 (2), 162–184 (2013). doi: 10.1016/j.cmet.2012.12.012
- Booth F. Effects of endurance exercise on cytochrome C turnover in skeletal muscle. Ann. N. Y. Acad. Sci., 301, 431–439 (1977). doi: 10.1111/j.1749-6632.1977.tb38219.x
- Hood D. A. Invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl.Physiol., 90 (3), 1137–1157 (2001). doi: 10.1152/jappl.2001.90.3.1137
- Grevendonk L., Connell N. J., McCrum C., Fealy C. E., Bilet L., Bruls Y. M. H., Mevenkamp J., Schrauwen-Hinderling V. B., Jörgensen J. A., Moonen-Kornips E., Schaart G., Havekes B., de Vogel-van den Bosch J., Bragt M. C. E., Meijer K., Schrauwen P., and Hoeks J. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun., 12 (1), 4773 (2021). doi: 10.1038/s41467-021-24956-2
- Кироненко Т. А. Продукция миокинов и концентрация одновалентных катионов в мышечной ткани мышей при физических нагрузках: Дис. … канд. биол. наук (Томский гос. ун-т, Томск, 2021).
- Kironenko T. A., Milovanova K. G., Zakharova A. N., Sidorenko S. V., Klimanova E. A., Dyakova E. Y., Orlova A. A., Negodenko E. S., Kalinnikova Y. G., Orlov S. N., and Kapilevich L. V. Effect of dynamic and static load on the concentration of myokines in the blood plasma and content of sodium and potassium in mouse skeletal muscles. Biochemistry (Moscow), 86 (3), 370–381 (2021). doi: 10.1134/S0006297921030123
- Ostrowski K., Ronde T., Asp S., Schjerling P., and Pedersen B. K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans . J. Physiol., 515 (1), 287–291 (1999). doi: 10.1111/j.1469-7793.1999.287ad.x
- Pedersen B. K. and Febbraio M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev., 88 (4), 1379–1406 (2008). doi: 10.1152/physrev.90100.2007
- Шенкман Б. С., Ломоносова Ю. Н. и Немировская Т. Л. Нейрональная NO-синтаза – молекулярный гарант стабильности мышечного волокна: NOзависимые сигнальные пути в активной и разгруженной мышце. Успехи физиол. наук, 45 (2), 37–48 (2014).
- Snenkman B. S., Nemirovskaya T. L., and Lomonosova Y. N. No-dependent signaling pathways in unloaded skeletal muscle. Front. Physiol., 6, 298 (2015). doi: 10.3389/fphys.2015.00298
- Ивашкин В. Т. и Драпкина О. М. Клиническое значение оксида азота и белков теплового шока (ГЭОТАРМедиа, М., 2011).
- Louis E., Raue U., Yang Y., Jemiolo B., and Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J. Appl. Physiol., 103 (5), 1744–1751 (2007). doi: 10.1152/japplphysiol.00679.2007
- Steensberg A., van Hall G., Osada T., Sacchetti M., Saltin B., and Pedersen K. B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol., 529 (1), 237–242 (2000). doi: 10.1111/j.1469-7793.2000.00237.x
- Lavin K. M., Coen P. M., Baptista L. C., Bell M. B., Drummer D., Harper S. A., Lixandrão M. E., McAdam J. S., O'Bryan S. M., Ramos S., Roberts L. M., Vega R. B., Goodpaster B. H., Bamman M. M., and Buford T. W. State of knowledge on molecular adaptations to exercise in humans: historical perspectives and future directions. Compr. Physiol., 12 (2), 3193–3279 (2022). doi: 10.1002/cphy.c200033
- Pirkmajer S., Bezjak K., Matkovic U., Dolinar K., Jiang L. Q., Miš K., Gros K., Milovanova K., Pirkmajer K. P., Marš T., Kapilevich L., and Chibalin A. V. Ouabain suppresses IL-6/STAT3 signaling and promotes cytokine secretion in cultured skeletal muscle cells. Front. Physiol., 11, 566584 (2020). doi: 10.3389/fphys.2020.566584
- Park Y. J., Yoo S. A., Kim M., and Kim W. U. The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Front. Immunol., 11, 195 (2020). doi: 10.3389/fimmu.2020.00195
- Henriksen T., Green C., and Pedersen B. K. Myokines in myogenesis and health. Recent Pat. Biotechnol., 6 (3), 167–171 (2012). doi: 10.2174/1872208311206030167
- Qi C., Song X., Wang H., Yan Y., and Liu B. The role of exercise-induced myokines in promoting angiogenesis. Front. Physiol., 13, 981577 (2022). doi: 10.3389/fphys.2022.981577
- Ziche M. and Morbidelli L. Nitric oxide and angiogenesis. J. Neurooncol., 50 (1–2), 139–148 (2000). doi: 10.1023/a:1006431309841
- Huang Y. H., Yang H. Y., Huang S. W., Ou G., Hsu Y. F., and Hsu M. J. Interleukin-6 induces vascular endothelial growth factor-C expression via Src-FAK-STAT3 signaling in lymphatic endothelial cells. PLoS One, 11 (7), e0158839 (2016). doi: 10.1371/journal.pone.0158839
- Gavin T. P., Robinson C. B., Yeager R. C., England J. A., Nifong L. W., and Hickner R. C. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J. Appl. Physiol., 96 (1), 19–24 (2004). doi: 10.1152/japplphysiol.00748.2003
- Yazdani F., Shahidi F., and Karimi P. The effect of 8 weeks of high-intensity interval training and moderateintensity continuous training on cardiac angiogenesis factor in diabetic male rats. J. Physiol. Biochem., 76 (2), 291–299 (2020). doi: 10.1007/s13105-020-00733-5
- Dyakova E. Y., Kapilevich L. V., Shylko V. G., Popov S. V., and Anfinogenova Y. Physical exercise associated with NO production: signaling pathways and significance in health and disease. Front. Cell Dev. Biol., 3, 19 (2015). doi: 10.3389/fcell.2015.00019
- Wang Q., Pei S., Lu X. L., Wang L., and Wu Q. On the characterization of interstitial fluid flow in the skeletal muscle endomysium. J. Mech. Behav. Biomed. Mater., 102, 103504 (2020). doi: 10.1016/j.jmbbm.2019.103504
- Holmäng A., Mimura K., and Lönnroth P. Involuntary leg movements affect interstitial nutrient gradients and blood flow in rat skeletal muscle. J. Appl. Physiol., 92 (3), 982–988 (2002). doi: 10.1152/japplphysiol.01194.2000
- Yousefi M. R., Ahmadi N., Abbaszadeh R., Kheybari K., Valizadeh A., and Nasiri M. The effect of isometric training on prevention of density reduction in injured limbs during a period of immobilization. Aust. J. Basic Appl. Sci., 5 (12), 981–985 (2011).
- Taufik N. H., Tulaar A. B. M., Moesbar N., and Ganie R. A. The effect of isometric exercise plantar flexor on osteoblast activity measured by bone specific alkaline phosphatase and callus formation in a patient post open reduction internal fixation with non-articular tibia fracture. Open Access Maced. J. Med. Sci., 7 (20), 3409–3415 (2019). doi: 10.3889/oamjms.2019.435
- Cavalié H., Horcajada-Molteni M. N., Lebecque P., Davicco M. J., Coxam V., Lac G., and Barlet J. P. Progressive isometric force training and bone mass in rats. J. Musculoskelet. Neuron. Interact., 3 (1), 47–52 (2003).
- Boerckel J. D., Uhrig B. A., Willett N. J., Huebsch N., and Guldberg R. E. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl. Acad. Sci. USA, 108 (37), e674–e680 (2011). doi: 10.1073/pnas.1107019108
- Teng S. and Herring S. W. Compressive loading on bone surfaces from muscular contraction: an in vivo study in the miniature pig, Sus scrofa. J. Morphol., 238 (1), 71–80 (1998). doi: 10.1002/(SICI)1097-4687(199810)238:171::AIDJMOR63.0.CO;2-Q
- Wang L., You X., Zhang L., Zhang C., and Zou W. Mechanical regulation of bone remodeling. Bone Res., 10 (1), 16 (2022). doi: 10.1038/s41413-022-00190-4
- Weinbaum S., Cowin S. C., and Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech., 27 (3), 339–360 (1994). doi: 10.1016/0021-9290(94)90010-8
- Kwon R. Y., Meays D. R., Tang W. J., and Frangos J. A. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J. Bone Miner. Res., 25 (8), 1798–1807 (2010). doi: 10.1002/jbmr.74
- Ma C., Geng B., Zhang X., Li R., Yang X., and Xia Y. Fluid shear stress suppresses osteoclast differentiation in RAW264.7 cells through extracellular signal-regulated kinase 5 (ERK5) signaling pathway. Med. Sci. Monit., 2020 (26), e918370 (2020). doi: 10.12659/MSM.918370
- McAllister T. N., Du T., and Frangos J. A. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem. Biophys. Res. Commun., 270 (2), 643–648 (2000). doi: 10.1006/bbrc.2000.2467
- Valles G., Bensiamar F., Maestro-Paramio L., GarciaRey E., Vilaboa N., and Saldana L. Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells. Stem Cell Res. Ther., 11 (1), 57 (2020). doi: 10.1186/s13287-020-1578-1
- Nichols R. A., Niagro F. D., Borke J. L., and Cuenin M. F. Mechanical stretching of mouse calvarial osteoblasts in vitro models changes in MMP-2 and MMP-9 expression at the boneimplant interface. J. Oral Implantol., 42 (2), 138–144 (2015). doi: 10.1563/aaid-joi-D-14-00199
- Tong X., Chen X., Zhang Sh., Huang Mei, Shen X., Xu J., and Zou J. The effect of exercise on the prevention of osteoporosis and bone angiogenesis. BioMed. Res. Int., 2019, 8171897 (2019). doi: 10.1155/2019/8171897
- Новикова С. Л. Евразийский патент на изобретение № 010788 В1 (2008).
- Зайцев Н. М., Яруллина Т. С., Авдонченко Т. С., Яруллин И. М., Пронских А. А., Касатова А. И., Касатов Д. А. и Рыжих Е. Е. Российский патент на изобретение RU 2725245, Бюл. 19 (2020).
- Лапшин В. П., Чукина Е. А., Клюквин И. Ю., Антонов В. В., Ларионов К. С. и Боголюбский Ю. А. Лечебная гимнастика в восстановительном лечении больных пожилого и старческого возраста после эндопротезирования тазобедренного сустава. Вопросы курортологии и физиотерапии, 4, 37 (2002).
- Konnyu K. J., Pinto D., Cao W., Aaron R. K., Panagiotou O. A., Bhuma M. R., Adam G. P., Balk E. M., and Thoma L. M. Rehabilitation for total hip arthroplasty: A systematic review. Am. J. Phys. Med. Rehabil., 102 (1), 11–18 (2023). doi: 10.1097/PHM.0000000000002007
- Okoro T., Lemmey A. B., Maddison P., and Andrew J. An appraisal of rehabilitation regimes used for improving functional outcome after total hip replacement surgery. BMC Sports Sci. Med. Rehabil., 4, 5 (2012). doi: 10.1186/1758-2555-4-5
- Mikkelsen L. R., Mikkelsen S. S., and Christensen F. B. Early, intensified home-based exercise after total hip replacement—a pilot study. Physiother. Res. Int., 17 (4), 214–226 (2012). doi: 10.1002/pri.1523
- Madara K. C., Marmon A., Aljehani M., Hunter-Giordano A., Zeni J. Jr., and Raisis L. Progressive rehabilitation after total hip arthroplasty: a pilot and feasibility study. Int. J. Sports Phys. Ther., 14 (4), 564–581 (2019). doi: 10.26603/ijspt20190564
- Di Monaco M. and Castiglioni C. Which type of exercise therapy is effective after hip arthroplasty? A systematic review of randomized controlled trials. Eur. J. Phys. Rehabil. Med., 49 (6), 893–907 (2013).
- Колесников С. В., Дьячкова Г. В. и Комарова Э. С. Применение различных реабилитационных мероприятий в восстановительном лечении больных с имплантатом тазобедренного сустава (собственные данные и обзор литературы). Гений ортопедии, 26 (2), 254–260 (2020). doi: 10.18019/1028-4427-2020-26-2-254-260
- Di Monaco M., Vallero F., Tappero R., and Cavanna A. Rehabilitation after total hip arthroplasty: a systematic review of controlled trials on physical exercise programs. Eur. J. Phys. Rehabil. Med., 45 (3), 303–317 (2009).
- Назаренко Г. И., Героева И. Б. и Яшина Л. П. Современные взгляды на реабилитацию пациентов после эндопротезирования крупных суставов. Лечебная физкультура и спортивная медицина, 11 (107), 23–29 (2012).
- Eisermann U., Haase I., and Kladny B. Computer-aided multimedia training in orthopedic rehabilitation. A m. J. Phys. Med. Rehabil., 83 (9), 670–680 (2004). doi: 10.1097/01.phm.0000137307.44173.5d
- Lowe C. J., Davies L., Sackley C. M., and Barker K. L. Effectiveness of land-based physiotherapy exercise following hospital discharge following hip arthroplasty for osteoarthritis: an updated systematic review. Physiotherapy, 101 (3), 252–265 (2015). doi: 10.1016/j.physio.2014.12.003
- Pohl T., Brauner T., Wearing S., Stamer K., and Horstmann T. Effects of sensorimotor training volume on recovery of sensorimotor function in patients following lower limb arthroplasty. BMC Musculoskelet. Disord., 16, 195 (2015). doi: 10.1186/s12891-015-0644-9
Supplementary files
