Study of Functional Manifestations of Met23Leu Missense Mutation in the Auxiliary Subunit KCNE2 (Mirp1) of Cardiac Channel Kv11.1
- Authors: Pivovarov E.M1, Li B.1,2, Selin A.O1, Mitrov G.R1, Glukhov G.S1,2, Abramochkin D.V1, Karlova M.G1, Shestak A.G3, Novoseletsky V.N2, Zaklyazminskaya E.V3, Shaitan K.V1, Sokolova O.S1,2
-
Affiliations:
- Lomonosov Moscow State University
- Shenzhen MSU-BIT University, International University Park Road
- Russian Scientific Center of Surgery named after Academician B.V. Petrovsky
- Issue: Vol 70, No 1 (2025)
- Pages: 93-103
- Section: Cell biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/285387
- DOI: https://doi.org/10.31857/S0006302925010113
- EDN: https://elibrary.ru/LWEMMY
- ID: 285387
Cite item
Abstract
About the authors
E. M Pivovarov
Lomonosov Moscow State UniversityMoscow, Russia
B. Li
Lomonosov Moscow State University; Shenzhen MSU-BIT University, International University Park RoadMoscow, Russia; Shenzhen, People’s Republic of China
A. O Selin
Lomonosov Moscow State UniversityMoscow, Russia
G. R Mitrov
Lomonosov Moscow State UniversityMoscow, Russia
G. S Glukhov
Lomonosov Moscow State University; Shenzhen MSU-BIT University, International University Park RoadMoscow, Russia; Shenzhen, People’s Republic of China
D. V Abramochkin
Lomonosov Moscow State UniversityMoscow, Russia
M. G Karlova
Lomonosov Moscow State UniversityMoscow, Russia
A. G Shestak
Russian Scientific Center of Surgery named after Academician B.V. PetrovskyMoscow, Russia
V. N Novoseletsky
Shenzhen MSU-BIT University, International University Park RoadShenzhen, People’s Republic of China
E. V Zaklyazminskaya
Russian Scientific Center of Surgery named after Academician B.V. PetrovskyMoscow, Russia
K. V Shaitan
Lomonosov Moscow State UniversityMoscow, Russia
O. S Sokolova
Lomonosov Moscow State University; Shenzhen MSU-BIT University, International University Park Road
Email: sokolova@mail.bio.msu.ru
Moscow, Russia; Shenzhen, People’s Republic of China
References
- Соколова О. С., Кирпичников М. П., Шайтан К. В., Антонов М. Ю., Волынцева А. Д., Глухов Г. С., Горделий В. И., Деркачева Н. И., Карлова М. Г., Кузьмичёв П. К., Люкманова Е. Н., Моисеенко А. В., Мышкин М. Ю., Некрасова О. В., Новоселецкий В. Н., Охрименко И. С., Парамонов А. С., Попинако А. В., Станишнева-Коновалова Т. Б., Трифонова Е. С., Феофанов А. В., Чупин В. В., Шевцов М. Б. и Шенкарёв З. О. Современные методы изучения структуры и функций ионных каналов (Товарищество научных изданий КМК, М., 2020). EDN: ICASCW
- Chen S., Francioli L. C., Goodrich J. K., Collins R. L., Kanai M., Wang Q., Alföldi J., Watts N. A., Vittal C., Gauthier L. D., Poterba T., Wilson M. W., Tarasova Y., Phu W., Grant R., Yohannes M. T., Koenig Z., FarjounY., Banks E., Donnelly S., Gabriel S., Gupta N., Ferriera S., Tolonen C., Novod S., Bergelson L., Roazen D., Ruano-Rubio V., Covarrubias M., Llanwarne C., Petrillo N., Wade G., Jeandet T., Munshi R., Tibbetts K., Genome Aggregation Database (gnomAD) Consortium, O’Donnell-Luria A., Solomonson M., Seed C., Martin A. R., Talkowski M. E., Rehm H. L., Daly M. J., Tiao G., Neale B. M., MacArthur D. G., and Karczewski K. J. A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 625, 92–100 (2024). doi: 10.1038/s41586-023-06045-0
- Schwartz P. J., Ackerman M. J., George A. L., Jr., and Wilde A. A. M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol., 62 (3), 169–180 (2013). doi: 10.1016/j.jacc.2013.04.044
- Bohnen M. S., Peng G., Robey S. H., Terrenoire C., Iyer V., Sampson K. J., and Kass R. S. Molecular pathophysiology of congenital long QT syndrome. Physiol. Rev., 97 (1), 89–134 (2017). doi: 10.1152/physrev.00008.2016
- Schwartz P. J., Stramba-Badiale M., Crotti L., Pedrazzini M., Besana A., Bosi G., Gabbarini F., Goulene K., Insolia R., Mannarino S., Mosca F., Nespoli L., Rimini A., Rosati E., Salice P., and Spazzolini C. Prevalence of the congenital long-QT syndrome. Circulation, 120 (18), 1761–1767 (2009). doi: 10.1161/CIRCULATIONAHA.109.863209
- Schwartz P. J. and Ackerman M. J. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur. Heart J., 34 (40), 3109–3116 (2013). doi: 10.1093/eurheartj/eht089
- Schwartz P. J., Priori S. G., Spazzolini C., Moss A. J., Vincent G. M., Napolitano C., Denjoy I., Guicheney P., Breithardt G., Keating M. T., Towbin J. A., Beggs A. H., Brink P., Wilde A. A., Toivonen L., Zareba W., Robinson J. L., Timothy K. W., Corfield V., Wattanasirichaigoon D., Corbett C., Haverkamp W., SchulzeBahr E., Lehmann M. H., Schwartz K., Coumel P., and Bloise R. Genotype-phenotype correlation in the longQT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103 (1), 89–95 (2001). doi: 10.1161/01.cir.103.1.89
- Schwartz P. J. and Crotti L. Long and short QT syndromes. In: Cardiac Electrophysiology: From Cell to Bedside (Seventh Edition), Ed. by D. P. Zipes, J. Jalife, and W. G. Stevenson (Elsiever, 2018), pp. 893–904. doi: 10.1016/B978-0-323-44733-1.00093-6
- Schwartz P. J., Crotti L., and George A. L. Jr. Modifier genes for sudden cardiac death. Eur. Heart J., 39 (44), 3925–3931 (2018). doi: 10.1093/eurheartj/ehy502
- Lundby A., Andersen M. N., Steffensen A. B., Horn H., Kelstrup C. D., Francavilla C., Jensen L. J., Schmitt N., Thomsen M. B., and Olsen J. V. In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling. Sci. Signal., 6 (278), rs11 (2013). doi: 10.1126/scisignal.2003506
- Marx S. O., Kurokawa J., Reiken S., Motoike H., D’Armiento J., Marks A. R., and Kass R. S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295 (5554), 496–499 (2002). doi: 10.1126/science.1066843
- Chen L., Marquardt M. L., Tester D. J., Sampson K. J., Ackerman M. J., and Kass R. S. Mutation of an A-kinaseanchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA, 104 (52), 20990–20995 (2007). doi: 10.1073/pnas.0710527105
- Anantharam A. and Abbott G. W. In: The hERG Cardiac Potassium Channel: Structure, Function and Long QT Syndrome. Novartis Foundation Symposium 266, Ed. by D. J. Chadwick and J. Goode (Novartis Foundation, 2005), pp. 100–112; discussion 112-7, 155-8.
- Eldstrom J. and Fedida D. The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Rev. Mol. Med., 13, e38 (2011). doi: 10.1017/S1462399411002092
- Takumi T., Moriyoshi K., Aramori I., Ishii T., Oiki S., Okada Y., Ohkubo H., and Nakanishi S. Alteration of channel activities and gating by mutations of slow ISK potassium channel. J. Biol. Chem., 266 (33), 22192–22198 (1991). doi: 10.1016/S0021-9258(18)54553-1
- Gage S. D. and Kobertz W. R. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels. J. Gen. Physiol., 124 (6), 759–771 (2004). doi: 10.1085/jgp.200409114
- Li P., Liu H., Lai C., Sun P., Zeng W., Wu F., Zhang L., Wang S., Tian C., and Ding J. Differential modulations of KCNQ1 by auxiliary proteins KCNE1 and KCNE2. Sci. Rep., 4, 4973 (2014). doi: 10.1038/srep04973
- Li Z., Li S., Luo M., Jhong J. H., Li W., Yao L., Pang Y., Wang Z., Wang R., Ma R., Yu J., Huang Y., Zhu X., Cheng Q., Feng H., Zhang J., Wang C., Hsu J. B., Chang W. C., Wei F. X., Huang H. D., and Lee T. Y. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucl. Acids Res., 50 (D1), D471–D479 (2022). doi: 10.1093/nar/gkab1017
- Zhang M., Wang Y., Jiang M., Zankov D. P., Chowdhury S., Kasirajan V., and Tseng G. N. KCNE2 protein is more abundant in ventricles than in atria and can accelerate hERG protein degradation in a phosphorylation-dependent manner. Am. J. Physiol. Heart. Circ. Physiol., 302 (4), H910–H922 (2012). doi: 10.1152/ajpheart.00691.2011
- Liu L., Tian J., Lu C., Chen X., Fu Y., Xu B., Zhu C., SunY., Zhang Y., Zhao Y., and Li Y. Electrophysiological characteristics of the LQT2 syndrome mutation KCNH2-G572S and regulation by accessory protein KCNE2. Front. Physiol., 7, 650 (2016). doi: 10.3389/fphys.2016.00650
- Jordan M., Schallhorn A., and Wurm F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucl. Acids Res., 24 (4), 596-601 (1996). doi: 10.1093/nar/24.4.596
- Sambrook J. and Russell D. W. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, N.-Y., 2001).
- Pogozheva I. D., Armstrong G. A., Kong L., Hartnagel T. J., Carpino C. A., Gee S. E., Picarello D. M., Rubin A. S., Lee J., Park S., Lomize A. L., and Im W. Comparative molecular dynamics simulation studies of realistic eukaryotic, prokaryotic, and archaeal membranes. J. Chem. Inf. Model., 62 (4), 1036–1051 (2022). doi: 10.1021/acs.jcim.1c01514
- Miranda W. E., Guo J., Mesa-Galloso H., Corradi V., Lees-Miller J. P., Tieleman D. P., Duff H. J., and Noskov S. Y. Lipid regulation of hERG1 channel function. Nature Commun., 12 (1), 1409 (2021). doi: 10.1038/s41467-021-21681-8
- Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., and Lomize A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucl. Acids Res., 40 (Database issue), D370–376 (2012). doi: 10.1093/nar/gkr703
- Jo S., Kim T., Iyer V. G., and Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem., 29 (11), 1859–1865 (2008). doi: 10.1002/jcc.20945
- Humphrey W., Dalke A., and Schulten K. VMD: visual molecular dynamics. J. Mol. Graph., 14 (1), 33–38 (1996). doi: 10.1016/0263-7855(96)00018-5
- Olesen M. S., Andreasen L., Jabbari J., Refsgaard L., Haunso S., Olesen S. P., Nielsen J. B., Schmitt N., and Svendsen J. H. Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm, 11 (2), 246–251 (2014). doi: 10.1016/j.hrthm.2013.10.034
- Nielsen J. B., Bentzen B. H., Olesen M. S., David J. P., Olesen S. P., Haunso S., Svendsen J. H., and Schmitt N. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomark Med., 8 (4), 557–570 (2014). doi: 10.2217/bmm.13.137
Supplementary files
