Regulation of Electron Transport in Chloroplasts: Induction Processes in the Leaves of Cucumis Genus
- Authors: Marinin N.A1, Suslichenko I.S1, Tikhonov A.N1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 70, No 1 (2025)
- Pages: 59-71
- Section: Cell biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/285383
- DOI: https://doi.org/10.31857/S0006302925010074
- EDN: https://elibrary.ru/LXLIGZ
- ID: 285383
Cite item
Abstract
In this work, we describe results of our study of electron transport in chloroplasts in situ (leaves) of two species of the Cucumis genus, shade-tolerant species С. sativus (cucumber) and light-loving species С. melo (melon), grown at high light (800–1000 μmol photons m−2 · s−1) or low light (50–125 μmol photons m−2 · s−1) conditions. The light-induced processes of electron transport were monitored by using the electron paramagnetic resonance (EPR) and optical methods (a difference signal from P700 + ), and the yield of chlorophyll a fluorescence. It has been demonstrated that the plants grown at high light reveal high rates of P700 photooxidation and fluorescence decrease, as compared to plants grown at low light. The data obtained are discussed in the context of electron transport regulation mechanisms in shade-tolerant and light-loving species of the Cucumis genus.
About the authors
N. A Marinin
Lomonosov Moscow State UniversityMoscow, Russia
I. S Suslichenko
Lomonosov Moscow State UniversityMoscow, Russia
A. N Tikhonov
Lomonosov Moscow State University
Email: an_tikhonov@mail.ru
Moscow, Russia
References
- Эдвардс Д. и Уокер Д., Фотосинтез С3- и С4-расте-ний: механизмы и регуляция (Мир, М., 1986).
- Walker D. A. The Z-scheme – down hill all the way. Trends Plant Sci., 7 (4), 183–185 (2002). doi: 10.1016/S1360-1385(02)02242-2
- Ruban A. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting (John Wiley & Sons, Ltd., 2012). doi: 10.1002/9781118447628
- DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schünemann D., Finazzi G., Joliot P., Barbato R., and Leister D. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell, 132 (2), 273–285 (2008). doi: 10.1016/j.cell.2007.12.028
- Strand D. D., Fisher N., and Kramer D. M. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current Research and Future Trends, Ed. by H. Kirchhoff (Caister Academic Press, Norfolk, UK, 2016), pp. 89– 100. doi: 10.21775/9781910190470
- Asada K. The water-water cycle in chloroplasts. Scavenging of Active Oxygens and Dissipation of Excess Photons. Ann. Rev. Plant Physiol. Plant Molec. Biol., 50 (1), 601–639 (1999). doi: 10.1146/annurev.arplant.50.1.601
- Shikanai T. and Yamamoto H. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant, 10 (1), 20–29 (2017). doi: 10.1016/j.molp.2016.08.004
- Li Z., Wakao S., Fischer B. B., and Niyogi K. K. Sensing and responding to excess light. Ann. Rev. Plant Biol., 60 (1), 239–260 (2009). doi: 10.1146/annurev.arplant.58.032806.103844
- Demmig-Adams B., Cohu C. M., Muller O., and AdamsW. W. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth. Res., 113 (1–3), 75–88 (2012). doi: 10.1007/s11120-012-9761-6
- Horton P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3455–3465 (2012). doi: 10.1098/rstb.2012.0069
- Bellafiore S., Barneche F., Peltier G., and Rochaix J.-D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature, 433 (7028), 892– 895 (2005). doi: 10.1038/nature03286
- Li X.-P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., and Niyogi K. K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem., 279 (22), 22866– 22874 (2004). doi: 10.1074/jbc.M402461200
- Tikhonov A. N. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res., 116 (2–3), 511–534 (2013). doi: 10.1007/s11120-013-9845-y
- Rochaix J.-D. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta, 1807 (3), 375–383 (2011). doi: 10.1016/j.bbabio.2010.11.010
- Kasahara M., Kagawa T., Oikawa K., Suetsugu N., Miyao M., and Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature, 420 (6917), 829–832 (2002). doi: 10.1038/nature01213
- Liu L., Chow W. S., and Anderson J. M. Light quality during growth of Tradescantia albiflora regulates photosystem stoichiometry, photosynthetic function and susceptibility to photoinhibition. Physiol. Plantarum, 89 (4), 854– 860 (1993). doi: 10.1111/j.1399-3054.1993.tb05296.x
- Lichtenthaler H. K., Babani F., and Langsdorf G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth. Res., 93 (1–3), 235–244 (2007). doi: 10.1007/s11120-007-9174-0
- Lichtenthaler H. K., Ac A., Marek M. V., Kalina J., and Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Bio-chem., 45 (8), 577–588 (2007). doi: 10.1016/j.plaphy.2007.04.006
- Matsubara S., Förster B., Waterman M., Robinson S. A., Pogson B. J., Gunning B., and Osmond B. From ecophysiology to phenomics: some implications of photoprotection and shade–sun acclimation in situ for dynamics of thylakoids in vitro. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3503–3514 (2012). doi: 10.1098/rstb.2012.0072
- Kono M. and Terashima I. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B: Biology, 137, 89–99 (2014). doi: 10.1016/j.jphotobiol.2014.02.016
- Kaiser E., Morales A., Harbinson J., Kromdijk J., Heu-velink E., and Marcelis L. F. M. Dynamic photosynthesis in different environmental conditions. J. Exp. Botany, 66 (9), 2415–2426 (2015). doi: 10.1093/jxb/eru406
- Suslichenko I. S. and Tikhonov A. N. Photo‐reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett., 593 (8), 788–798 (2019). doi: 10.1002/1873-3468.13366
- Беньков М. А., Сусличенко И. С., Трубицин Б. В. и Тихонов А. Н. Влияние акклимации растений на электронный транспорта в мембранах хлоропластов Cucumis sativus и Cucumis melo. Биол. мембраны, 40 (3), 172–187 (2023). doi: 10.31857/S0233475523030039
- Рууге Э. К. и Тихонов А. Н. Электронный парамагнитный резонанс: исследование механизмов регуляции световых стадий фотосинтеза растений. Биофизика, 67 (3), 516–523 (2022). doi: 10.31857/S0006302922030097
- Suslichenko I. S., Trubitsin B. V., Vershubskii A. V., and Tikhonov A. N. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus ro-sa-sinensis and Tradescantia leaves. Plant Physiol. Bio-chem., 185, 233–243 (2022). doi: 10.1016/j.plaphy.2022.06.002
- Ptushenko V. V., Zhigalova T. V., Avercheva O. V., and Tikhonov A. N. Three phases of energy-dependent induction of P700+ and Chl a fluorescence in Tradescantia flu-minensis leaves. Photosynth. Res., 139 (1–3), 509–522 (2019). doi: 10.1007/s11120-018-0494-z
- Puthiyaveetil S., Kirchhoff H., and Höhner R. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts: Current Research and Future Trends, Ed. by H. Kirchhoff (Caister Academic Press, Norfolk, UK, 2016), pp. 59–87. doi: 10.21775/9781910190470
- Flannery S. E., Hepworth C., Wood W. H. J., Pastorelli F., Hunter C. N., Dickman M. J., Jackson P. J., and Johnson M. P. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J., 105 (1), 223–244 (2021). doi: 10.1111/tpj.15053
- Караваев В. А. и Кукушкин А. К. Исследование состояния электронно-транспортной цепи в листьях высших растений методом быстрой индукции флуоресценции. Биофизика, 21 (5), 862–866 (1976).
- Lazár D. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1412 (1), 1–28 (1999). doi: 10.1016/S0005-2728(99)00047-X
- Stirbet A. and Govindjee G. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. Photosynth. Res., 130 (1–3), 193–213 (2016). doi: 10.1007/s11120-016-0243-0
- Kalaji H. M., Schansker G., Bresic M., Bussotti F., Cala-tayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Li P., Losciale P., Mishra V. K., Misra A. N., Nebauer S. G., Pancaldi S., Penella C., Pollastrini M., Suresh K., Tam-bussi E., Yanniccari M., Zivcak M., Cetner M. D., Sam-borska I. A., Stirbet A., Olsovska K., Kunderlikova K., Shelonzek H., Rusinowski S., and Bąba W. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res., 132, 13–66 (2017). doi: 10.1007/s11120-016-0318-y
- Сусличенко И. С., Трубицин Б. В. и Тихонов А. Н. Регуляция электронного транспорта в хлоропластах: индукционные процессы в листьях традесканции. Биофизика, 25 (1) (принято к печати в 2024 г.).
- Klughammer C. and Schreiber U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth. Res., 128, 195–214 (2016). doi: 10.1007/s11120-016-0219-0
- Tikhonov A. N., Khomutov G. B., Ruuge E. K., and Blumenfeld L. A. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim. Biophys. Acta, 637 (2), 321–333 (1981). doi: 10.1016/0005-2728(81)90171-7
- Tikhonov A. N. The cytochrome b6f complex: Biophysical aspects of its functioning in chloroplasts. In Membrane protein complexes: structure and function, subcellular biochemistry, Ed. by J. R. Harris and E. J. Boekema (Springer, Singapore, 2018), vol. 87, pp. 287–328. doi: 10.1007/978-981-10-7757-9
- Kirchhoff H., Hall C., Wood M., Herbstová M., Tsabari O., Nevo R., Charuvi D., Shimoni E., and Reich Z. Dynamic control of protein diffusion within the granal thylakoid lumen, Proc. Natl. Acad. Sci. USA, 108, 20248-20253 (2011), doi: 10.1073/pnas.1104141109
- Herbstová M., Tietz S., Kinzel C., Turkina M., and Kirchhoff H. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. USA, 109, 20130-20135 (2012). doi: 10.1073/pnas.1214265109
- Kirchhoff H., Li M., and Puthiyaveetil S. Sublocalization of cytochrome b6f complexes in photosynthetic membranes. Trends Plant Sci., 22, 574–582 (2017). doi: 10.1016/j.tplants.2017.04.004
- Stiehl H. H. and Witt H. T. Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Natur-forsch. Teil B , 24, 1588–1598 (1969). doi: 10.1515/znb-1969-1219
- Joliot P. and Joliot A. Cyclic electron transfer in plant leaf. Proc Natl Acad. Sci USA, 99, 10209–10214 (2002). doi: 10.1073/pnas.102306999
- Joliot P. and Johnson G. N. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl. Acad. Sci. USA, 108,13317–13322 (2011). doi: 10.1073/pnas.1110189108
- Yamori W. and Shikanai T. Physiological functions of cyclic electron transport around Photosystem I in sustaining photosynthesis and plant growth. Ann. Rev. Plant Biol., 67 (1), 81–106 (2016). doi: 10.1146/annurev-arplant-043015-112002
- Krieger-Liszkay A. and Feilke, K. The dual role of the plastid terminal oxidase PTOX: Between a protective and a pro-oxidant function. Front. Plant Sci., 6, 1147 (2016). doi: 10.3389/fpls.2015.01147
- Лютова М. И. и Тихонов А. Н. Сопоставление температурной зависимости подвижности липидо-растворимой спиновой метки в тилакоидных мембранах хлоропластов дыни и огурца. Биофизика, 33, 460–464 (1988).
- Tikhonov A. N. and Vershubskii A. V. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res., 146 (1–3), 299–329 (2020). doi: 10.1007/s11120-020-00777-0
- Anderson J. M. Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions. FEBS Lett., 138 (1),6 2–66 (1982). doi: 10.1016/0014-5793(82)80395-5
- Dekker, J. P., and Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta, 1706, 12–39 (2005). doi: 10.1016/j.bbabio.2004.09.009
Supplementary files
