Regulation of Electron Transport in Chloroplasts: Induction Processes in the Leaves of Cucumis Genus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, we describe results of our study of electron transport in chloroplasts in situ (leaves) of two species of the Cucumis genus, shade-tolerant species С. sativus (cucumber) and light-loving species С. melo (melon), grown at high light (800–1000 μmol photons m−2 · s−1) or low light (50–125 μmol photons m−2 · s−1) conditions. The light-induced processes of electron transport were monitored by using the electron paramagnetic resonance (EPR) and optical methods (a difference signal from P700 + ), and the yield of chlorophyll a fluorescence. It has been demonstrated that the plants grown at high light reveal high rates of P700 photooxidation and fluorescence decrease, as compared to plants grown at low light. The data obtained are discussed in the context of electron transport regulation mechanisms in shade-tolerant and light-loving species of the Cucumis genus.

About the authors

N. A Marinin

Lomonosov Moscow State University

Moscow, Russia

I. S Suslichenko

Lomonosov Moscow State University

Moscow, Russia

A. N Tikhonov

Lomonosov Moscow State University

Email: an_tikhonov@mail.ru
Moscow, Russia

References

  1. Эдвардс Д. и Уокер Д., Фотосинтез С3- и С4-расте-ний: механизмы и регуляция (Мир, М., 1986).
  2. Walker D. A. The Z-scheme – down hill all the way. Trends Plant Sci., 7 (4), 183–185 (2002). doi: 10.1016/S1360-1385(02)02242-2
  3. Ruban A. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting (John Wiley & Sons, Ltd., 2012). doi: 10.1002/9781118447628
  4. DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schünemann D., Finazzi G., Joliot P., Barbato R., and Leister D. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell, 132 (2), 273–285 (2008). doi: 10.1016/j.cell.2007.12.028
  5. Strand D. D., Fisher N., and Kramer D. M. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current Research and Future Trends, Ed. by H. Kirchhoff (Caister Academic Press, Norfolk, UK, 2016), pp. 89– 100. doi: 10.21775/9781910190470
  6. Asada K. The water-water cycle in chloroplasts. Scavenging of Active Oxygens and Dissipation of Excess Photons. Ann. Rev. Plant Physiol. Plant Molec. Biol., 50 (1), 601–639 (1999). doi: 10.1146/annurev.arplant.50.1.601
  7. Shikanai T. and Yamamoto H. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant, 10 (1), 20–29 (2017). doi: 10.1016/j.molp.2016.08.004
  8. Li Z., Wakao S., Fischer B. B., and Niyogi K. K. Sensing and responding to excess light. Ann. Rev. Plant Biol., 60 (1), 239–260 (2009). doi: 10.1146/annurev.arplant.58.032806.103844
  9. Demmig-Adams B., Cohu C. M., Muller O., and AdamsW. W. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth. Res., 113 (1–3), 75–88 (2012). doi: 10.1007/s11120-012-9761-6
  10. Horton P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3455–3465 (2012). doi: 10.1098/rstb.2012.0069
  11. Bellafiore S., Barneche F., Peltier G., and Rochaix J.-D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature, 433 (7028), 892– 895 (2005). doi: 10.1038/nature03286
  12. Li X.-P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., and Niyogi K. K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem., 279 (22), 22866– 22874 (2004). doi: 10.1074/jbc.M402461200
  13. Tikhonov A. N. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res., 116 (2–3), 511–534 (2013). doi: 10.1007/s11120-013-9845-y
  14. Rochaix J.-D. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta, 1807 (3), 375–383 (2011). doi: 10.1016/j.bbabio.2010.11.010
  15. Kasahara M., Kagawa T., Oikawa K., Suetsugu N., Miyao M., and Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature, 420 (6917), 829–832 (2002). doi: 10.1038/nature01213
  16. Liu L., Chow W. S., and Anderson J. M. Light quality during growth of Tradescantia albiflora regulates photosystem stoichiometry, photosynthetic function and susceptibility to photoinhibition. Physiol. Plantarum, 89 (4), 854– 860 (1993). doi: 10.1111/j.1399-3054.1993.tb05296.x
  17. Lichtenthaler H. K., Babani F., and Langsdorf G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth. Res., 93 (1–3), 235–244 (2007). doi: 10.1007/s11120-007-9174-0
  18. Lichtenthaler H. K., Ac A., Marek M. V., Kalina J., and Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Bio-chem., 45 (8), 577–588 (2007). doi: 10.1016/j.plaphy.2007.04.006
  19. Matsubara S., Förster B., Waterman M., Robinson S. A., Pogson B. J., Gunning B., and Osmond B. From ecophysiology to phenomics: some implications of photoprotection and shade–sun acclimation in situ for dynamics of thylakoids in vitro. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3503–3514 (2012). doi: 10.1098/rstb.2012.0072
  20. Kono M. and Terashima I. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B: Biology, 137, 89–99 (2014). doi: 10.1016/j.jphotobiol.2014.02.016
  21. Kaiser E., Morales A., Harbinson J., Kromdijk J., Heu-velink E., and Marcelis L. F. M. Dynamic photosynthesis in different environmental conditions. J. Exp. Botany, 66 (9), 2415–2426 (2015). doi: 10.1093/jxb/eru406
  22. Suslichenko I. S. and Tikhonov A. N. Photo‐reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett., 593 (8), 788–798 (2019). doi: 10.1002/1873-3468.13366
  23. Беньков М. А., Сусличенко И. С., Трубицин Б. В. и Тихонов А. Н. Влияние акклимации растений на электронный транспорта в мембранах хлоропластов Cucumis sativus и Cucumis melo. Биол. мембраны, 40 (3), 172–187 (2023). doi: 10.31857/S0233475523030039
  24. Рууге Э. К. и Тихонов А. Н. Электронный парамагнитный резонанс: исследование механизмов регуляции световых стадий фотосинтеза растений. Биофизика, 67 (3), 516–523 (2022). doi: 10.31857/S0006302922030097
  25. Suslichenko I. S., Trubitsin B. V., Vershubskii A. V., and Tikhonov A. N. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus ro-sa-sinensis and Tradescantia leaves. Plant Physiol. Bio-chem., 185, 233–243 (2022). doi: 10.1016/j.plaphy.2022.06.002
  26. Ptushenko V. V., Zhigalova T. V., Avercheva O. V., and Tikhonov A. N. Three phases of energy-dependent induction of P700+ and Chl a fluorescence in Tradescantia flu-minensis leaves. Photosynth. Res., 139 (1–3), 509–522 (2019). doi: 10.1007/s11120-018-0494-z
  27. Puthiyaveetil S., Kirchhoff H., and Höhner R. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts: Current Research and Future Trends, Ed. by H. Kirchhoff (Caister Academic Press, Norfolk, UK, 2016), pp. 59–87. doi: 10.21775/9781910190470
  28. Flannery S. E., Hepworth C., Wood W. H. J., Pastorelli F., Hunter C. N., Dickman M. J., Jackson P. J., and Johnson M. P. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J., 105 (1), 223–244 (2021). doi: 10.1111/tpj.15053
  29. Караваев В. А. и Кукушкин А. К. Исследование состояния электронно-транспортной цепи в листьях высших растений методом быстрой индукции флуоресценции. Биофизика, 21 (5), 862–866 (1976).
  30. Lazár D. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1412 (1), 1–28 (1999). doi: 10.1016/S0005-2728(99)00047-X
  31. Stirbet A. and Govindjee G. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. Photosynth. Res., 130 (1–3), 193–213 (2016). doi: 10.1007/s11120-016-0243-0
  32. Kalaji H. M., Schansker G., Bresic M., Bussotti F., Cala-tayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Li P., Losciale P., Mishra V. K., Misra A. N., Nebauer S. G., Pancaldi S., Penella C., Pollastrini M., Suresh K., Tam-bussi E., Yanniccari M., Zivcak M., Cetner M. D., Sam-borska I. A., Stirbet A., Olsovska K., Kunderlikova K., Shelonzek H., Rusinowski S., and Bąba W. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res., 132, 13–66 (2017). doi: 10.1007/s11120-016-0318-y
  33. Сусличенко И. С., Трубицин Б. В. и Тихонов А. Н. Регуляция электронного транспорта в хлоропластах: индукционные процессы в листьях традесканции. Биофизика, 25 (1) (принято к печати в 2024 г.).
  34. Klughammer C. and Schreiber U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth. Res., 128, 195–214 (2016). doi: 10.1007/s11120-016-0219-0
  35. Tikhonov A. N., Khomutov G. B., Ruuge E. K., and Blumenfeld L. A. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim. Biophys. Acta, 637 (2), 321–333 (1981). doi: 10.1016/0005-2728(81)90171-7
  36. Tikhonov A. N. The cytochrome b6f complex: Biophysical aspects of its functioning in chloroplasts. In Membrane protein complexes: structure and function, subcellular biochemistry, Ed. by J. R. Harris and E. J. Boekema (Springer, Singapore, 2018), vol. 87, pp. 287–328. doi: 10.1007/978-981-10-7757-9
  37. Kirchhoff H., Hall C., Wood M., Herbstová M., Tsabari O., Nevo R., Charuvi D., Shimoni E., and Reich Z. Dynamic control of protein diffusion within the granal thylakoid lumen, Proc. Natl. Acad. Sci. USA, 108, 20248-20253 (2011), doi: 10.1073/pnas.1104141109
  38. Herbstová M., Tietz S., Kinzel C., Turkina M., and Kirchhoff H. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. USA, 109, 20130-20135 (2012). doi: 10.1073/pnas.1214265109
  39. Kirchhoff H., Li M., and Puthiyaveetil S. Sublocalization of cytochrome b6f complexes in photosynthetic membranes. Trends Plant Sci., 22, 574–582 (2017). doi: 10.1016/j.tplants.2017.04.004
  40. Stiehl H. H. and Witt H. T. Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Natur-forsch. Teil B , 24, 1588–1598 (1969). doi: 10.1515/znb-1969-1219
  41. Joliot P. and Joliot A. Cyclic electron transfer in plant leaf. Proc Natl Acad. Sci USA, 99, 10209–10214 (2002). doi: 10.1073/pnas.102306999
  42. Joliot P. and Johnson G. N. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl. Acad. Sci. USA, 108,13317–13322 (2011). doi: 10.1073/pnas.1110189108
  43. Yamori W. and Shikanai T. Physiological functions of cyclic electron transport around Photosystem I in sustaining photosynthesis and plant growth. Ann. Rev. Plant Biol., 67 (1), 81–106 (2016). doi: 10.1146/annurev-arplant-043015-112002
  44. Krieger-Liszkay A. and Feilke, K. The dual role of the plastid terminal oxidase PTOX: Between a protective and a pro-oxidant function. Front. Plant Sci., 6, 1147 (2016). doi: 10.3389/fpls.2015.01147
  45. Лютова М. И. и Тихонов А. Н. Сопоставление температурной зависимости подвижности липидо-растворимой спиновой метки в тилакоидных мембранах хлоропластов дыни и огурца. Биофизика, 33, 460–464 (1988).
  46. Tikhonov A. N. and Vershubskii A. V. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res., 146 (1–3), 299–329 (2020). doi: 10.1007/s11120-020-00777-0
  47. Anderson J. M. Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions. FEBS Lett., 138 (1),6 2–66 (1982). doi: 10.1016/0014-5793(82)80395-5
  48. Dekker, J. P., and Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta, 1706, 12–39 (2005). doi: 10.1016/j.bbabio.2004.09.009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».