Genetic Analysis of Arctic Polar Bear Populations using Historical Samples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study analyzed genetic data using DNA isolated from museum specimens of polar bears in the collection of the Zoological Institute of the Russian Academy of Sciences. The unique data obtained in this study made it possible to characterize population structure of polar bears in the past and to lay the foundation for further research. Methods of DNA isolation used in archaeogenetics and paleogenetics were applied for historical materials. These methods provided sufficient quantity and quality of DNA suitable for high-throughput sequencing. The analysis of genetic variants made it possible to reveal population structure of spatial and temporal polar bear populations in the Russian Arctic regions and its changes associated with the active economic activities that unfolded in the first third of the twentieth century.

About the authors

A. A Kanapin

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

A. A Samsonova

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

A. V Abramov

Institute of Zoology, Russian Academy of Sciences

St. Petersburg, Russia

M. V Sablinenko

Institute of Zoology, Russian Academy of Sciences

St. Petersburg, Russia

V. V Platonov

Institute of Zoology, Russian Academy of Sciences

St. Petersburg, Russia

H. H Mustafin

Moscow Institute of Physics and Technology

Dolgoprudny, Russia

S. A Chekrygin

St. Petersburg State University

St. Petersburg, Russia

D. Hirata

Peter the Great St. Petersburg Polytechnic University

Email: dhirata59@gmail.com
St. Petersburg, Russia

References

  1. Supple M. A. and Shapiro B. Conservation of biodiversity in the genomics era. Genome Biol., 19, 131 (2018). doi: 10.1186/s13059-018-1520-3
  2. Theissinger K., Fernandes C., Formenti G., Bista I., Berg P. R., Bleidorn C., Bombarely A., Crottini A., Gallo G. R., Godoy J. A., Jentoft S., Malukiewicz J., Mouton A., Oomen R. A., Paez S., Palsb0ll P. J., Pampoulie Ch., Ruiz-López M. J., Secomandi S., Svardal H., Theofanopoulou C., de Vries J., Waldvogel A.-M., Zhang G., Jarvis E. D., Bálint M., Ciofi C., Waterhouse R. M., C Mazzoni. J., and Höglund J. How genomics can help biodiversity conservation. Trends Genet., 39, 545-559 (2023). doi: 10.1016/j.tig.2023.01.005
  3. Schmidt T. L., Thia J. A., and Hoffmann A. A. How can genomics help or hinder wildlife conservation? Annu Rev. Anim. Biosci., 12, 45-68 (2024). doi: 10.1146/annurev-animal-021022-051810
  4. Miller W., Schuster S. C., Welch A. J., Ratan A., Bedoya-Reina O. C., Zhao F., Kim H. L., Burhans R. C., Drautz D. I., Wittekindt N. E., Tomsho L. P., Ibarra-Laclette E., Herrera-Estrella L., Peacock E., Farley S., Sage G. K., Rode K., Obbard M., Montiel R., Bachmann L., Ingólfsson Ó., Aars J., Mailund Th., Wiig 0., Talbot S. L., and Lindqvist Ch. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc. Natl. Acad. Sci. USA, 109 (36), E2382-E2390 (2012). doi: 10.1073/pnas.1210506109
  5. Cahill J. A., Green R. E., Fulton T. L., Stiller M., Jay F., Ovsyanikov N., Salamzade R., St John J., Stirling I., Slatkin M., and Shapiro B. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet., 9, e1003345 (2013). doi: 10.1371/journal.pgen.1003345
  6. Liu S., Lorenzen E. D., Fumagalli M., Li B., Harris K., Xiong Z., Zhou L., Korneliussen T. S., Somel M., Babbitt C., Wray G., Li J., He W., Wang Zh., Fu W., Xiang X., Morgan C. C. Doherty A., O’Connell M. J., McInerney J. O., Born E. W., Dalén L., Dietz R., Orlando L., Sonne Ch., Zhang G., Nielsen R., Willerslev E., and Wang J. Population Genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell, 157, 785-794 (2014). doi: 10.1016/j.cell.2014.03.054
  7. Jensen E. L., Tschritter C., de Groot P. V. C., Hayward K. M., Branigan M., Dyck M., Clemente-Carvalho R. B. G., and Lougheed S. C. Canadian polar bear population structure using genome-wide markers. Ecol. Evol., 10, 3706-3714 (2020). doi: 10.1002/ece3.6159
  8. Laidre K. L., Supple M. A., Born E. W., Regehr E. V., Wiig Ø., Ugarte F., Aars J., Dietz R., Sonne C., Hegelund P., Isaksen C., Akse G. B., Cohen B. H., Stern. L., Moon T., Vollmers Ch., Corbett-Detig R., Paetkau D., and Shapiro B. Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions. Science, 376, 13331338 (2022). doi: 10.1126/science.abk2793
  9. Lan T., Leppälä K., Tomlin C., Talbot S. L., Sage G. K., Farley S. D., Shideler R. T., Bachmann L., Wiig Ø., AlbertV. A., Salojärvi J., Mailund Th., Drautz-Moses D. I., Schuster S. C., Herrera-Estrella L., and Lindqvist Ch. Insights into bear evolution from a Pleistocene polar bear genome. Proc. Natl. Acad. Sci. USA, 119, e2200016119 (2022). doi: 10.1073/pnas.2200016119
  10. Wang M.-S., Murray G. G. R., Mann D., Groves P., Vershinina A. O., Supple M. A., Kapp J. D., Corbett-Detig R., Crump S. E., Stirling I., Laidre K. L., Kunz M., Dalén L., Green R. E., and Shapiro B. A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears. Nature Ecol. Evol., 6, 936-944 (2022). doi: 10.1038/s41559-022-01753-8
  11. Peacock E., Sonsthagen S. A., Obbard M. E., Boltunov A., Regehr E. V., Ovsyanikov N., Aars J., Atkinson S. N., Sage G. K., Hope A. G., E. Zeyl, L. Bachmann, D. Ehrich, K. T. Scribner, S. C. Amstrup, S. Belikov, E. W. Born, A. E. Derocher, I. Stirling, M. K. Taylor, Ø. Wiig, D. Paetkau, and Talbot S. L. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic. PLoS One, 10, e112021 (2015). doi: 10.1371/journal.pone.0112021
  12. Malenfant R. M., Davis C. S., Cullingham C. I., and Coltman D. W. Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS One, 11, e0148967 (2016). doi: 10.1371/journal.pone.0148967
  13. Sorokin P. A., Zvychaynaya E. Y., Ivanov E. A., Mizin I. A., Mordvintsev I. N., Platonov N. G., Isachenko A. I., Lazareva R. E., and Rozhnov V. V. Population genetic structure in polar bears (Ursus maritimus) from the Russian Arctic Seas. Russ. J. Genet., 59, 1320-1332 (2023). doi: 10.1134/S1022795423120128
  14. Johnson K. R. and Owens I. F. P. A global approach for natural history museum collections. Science, 379, 11921194 (2023). doi: 10.1126/science.adf6434
  15. Orlando L., Allaby R., Skoglund P., Der Sarkissian C., Stockhammer P. W., Ávila-Arcos M. C., Fu Q., Krause J., Willerslev E., Stone A. C., and Warinner Ch. Ancient DNA analysis. Nature Rev. Methods Primers, 1, 14 (2021). doi: 10.1038/s43586-020-00011-0
  16. Díez-Del-Molino D., Sánchez-Barreiro F., Barnes I., Gilbert M. T. P., and Dalén L. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol., 33, 176-185 (2018). doi: 10.1016/j.tree.2017.12.002
  17. Card D. C., Shapiro B., Giribet G., Moritz C., and Edwards S. V. Museum genomics. Annu. Rev. Genet., 55, 633-659 (2021). doi: 10.1146/annurev-genet-071719-020506
  18. Raxworthy C. J. and Smith B. T. Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol. Evol., 36, 1049-1060 (2021). doi: 10.1016/j.tree.2021.07.009
  19. Benham P. M. and Bowie R. C. K. Natural history collections as a resource for conservation genomics: Understanding the past to preserve the future. J. Hered., 114, 367-384 (2023). doi: 10.1093/jhered/esac066
  20. Dabney J., Knapp M., Glocke I., Gansauge M.-T., Weihmann A., Nickel B., Valdiosera C., García N., Pääbo S., Arsuaga J.-L., and Meyer M. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA, 110, 15758-15763 (2013). doi: 10.1073/pnas.1314445110
  21. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997 [q-bio.GN] (2013). Available from: http://arxiv.org/abs/1303.3997.
  22. Korneliussen T. S., Albrechtsen A., and Nielsen R. ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics, 15, 356 (2014). doi: 10.1186/s12859-014-0356-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».