Study of the Cardioprotective Properties of Uridine-5'-Monophosphate and Uridine in a Rat Model of Myocardial Damage Induced by Isoprenaline

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effects of uridine and its monophosphoryl derivative both on the level of the main biochemical markers of myocardial damage in the blood and the electrical activity of the heart were investigated in a rat model of cardiomyopathy induced by isoprenaline. It was shown that the administration of isoprenaline (150 mg/kg, subcutaneously) caused an increase in the activity of serum enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT), leading to the elevated AST/ALT ratio or De Ritis ratio, and enhanced activity of lactate dehydrogenase in blood lymphocytes, which confirms the development of myocardial damage in experimental animals. ECG analysis has revealed prolonged RR, P-R, QT, QTc intervals and QRS complex, which indicates that the duration of depolarization and repolarization phases increases relative to the duration of the cardiac cycle in rats with isoprenaline-induced myocardial damage. Preliminary administration of uridine and uridine-5'-monophosphate to experimental animals at a dose of 30 mg/kg equally effectively prevented an increase in the enzymatic activity of AST and the De Ritis ratio, led to a decrease in the duration of P-R, QRS, QT and QTc intervals as well as to partial normalization of metabolic activity of rat blood lymphocytes. These findings suggest that uridine and uridine-5'-monophosphate have a similar protective effect on the contractile function of cardiomyocytes and can be used as agents for metabolic therapy in the treatment of ischemic heart disease.

About the authors

N. V Belosludtseva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: belosludtsevanv@iteb.pushchino.ru
Pushchino, Russia

T. A Uryupina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

D. A Khurtin

Mari State University

Yoshkar-Ola, Russia

N. V Khunderyakova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

G. D Mironova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

References

  1. Lindstrom M., DeCleene N., Dorsey H., Fuster V., Johnson C. O., LeGrand K. E., Mensah G. A., Razo C., Stark B., Varieur Turco J., and Roth G. A. Global burden of cardiovascular diseases and risks collaboration. J. Am. Coll. Cardiol., 80 (25), 2372–2425 (2022). doi: 10.1016/j.jacc.2022.11.001
  2. Marzilli M., Merz C. N., Boden W. E., Bonow R. O., Capozza P. G., Chilian W. M., DeMaria A. N., Guarini G., Huqi A., Morrone D., Patel M. R., and Weintraub W. S. Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J. Am. Coll. Cardiol., 60 (11), 951–956 (2012). doi: 10.1016/j.jacc.2012.02.082
  3. Ponikowski P., Voors A. A., Anker S. D., Bueno H., Cleland J. G. F., Coats A. J. S., Falk V., Gonzalez-Juanatey J. R., Harjola V.-P., Jankowska E. A., Jessup M., Linde C., Nihoyannopoulos P., Parissis J. T., Pieske B., Riley J. P., Rosano G. M. C., Ruilope L. M., Ruschitzka F., Rutten F. H., and van der Meer P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J., 37 (27), 2129–2200 (2016). doi: 10.1093/eurheartj/ehw128
  4. Severino P., D'Amato A., Pucci M., Infusino F., Birtolo L. I., Mariani M. V., Lavalle C., Maestrini V., Mancone M., and Fedele F. Ischemic heart disease and heart failure: role of coronary ion channels. Int. J. Mol. Sci., 21 (9), 3167 (2020). doi: 10.3390/ijms21093167
  5. Marzilli M. Myocardial energy balance and metabolism as causes of myocardial ischemia. Vascul. Pharmacol., 154, 107273 (2024). doi: 10.1016/j.vph.2023.107273
  6. Pepine C. J. and Douglas P. S. Rethinking stable ischemic heart disease: is this the beginning of a new era? J. Am. Coll. Cardiol., 60, 11, 957–959 (2012). doi: 10.1016/j.jacc.2012.04.046
  7. Tamis-Holland J. E., Jneid H., Reynolds H. R., Agewall S., Brilakis E. S., Brown T. M., Lerman A., Cushman M., Kumbhani Dh. J., Arslanian-Engoren C., Bolger A. F., and Beltrame J. F. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: A scientific statement from the american heart association. Circulation, 139 (18), 891–908 (2019). doi: 10.1161/CIR.0000000000000670
  8. Kuznetsov A. V., Javadov S., Margreiter R., Grimm M., Hagenbuchner J., and Ausserlechner M. J. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel), 8 (10), 454 (2019). doi: 10.3390/antiox8100454
  9. Ramaraj R. Stress cardiomyopathy: aetiology and management. Postgrad. Med. J., 83 (982), 543–546 (2007). doi: 10.1136/pgmj.2007.058776
  10. Yoganathan T., Perez-Liva M., Balvay D., Le Gall M., Lallemand A., Certain A., Autret G., Mokrani Ya., Guillonneau F., Bruce J., Nguyen V., Gencer U., Schmitt A., Lager F., Guilbert Th., Bruneval P., Vilar J., Maissa N., Mousseaux E., Viel Th., Renault G., Kachenoura N., and B. Tavitian Acute stress induces long-term metabolic, functional, and structural remodeling of the heart. Nat. Commun., 14 (1), 3835 (2023). doi: 10.1038/s41467-023-39910-7
  11. Boarescu P.-M., Boarescu I., Bulboaca A., Parvu A., Gheban D., and Bolboaca S. Isoproterenol induced myocardial infarction in rats: dose identification. Clujul. Med., 91, S39–S40 (2018). doi: 10.1016/j.phyplu.2023.100472
  12. Diao H., Gu H., and Chen Q. M. Hyperkalemic or low potassium cardioplegia protects against reduction of energy metabolism by oxidative stress. Antioxidants (Basel), 2023 12 (2), 452 (2023). doi: 10.3390/antiox12020452
  13. Guarini G., Huqi A., Morrone D., and Marzilli M. Pharmacological agents targeting myocardial metabolism for the management of chronic stable angina : an update. Cardiovasc. Drugs Ther., 30 (4), 379–391 (2016). doi: 10.1007/s10557-016-6677-y
  14. Horton J. L. and Virag J. Use of multifactorial treatments to address the challenge of translating experimental myocardial infarct reduction strategies. Int. J. Mol. Sci., 20 (6), 1449 (2019). doi: 10.3390/ijms20061449
  15. Mironova G. D., Negoda A. E., Marinov B. S., Paucek P., Costa A. D., Grigoriev S. M., Skarga Y. Y., and Garlid K. D. Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J. Biol. Chem., 279 (31), 32562–32568 (2004). doi: 10.1074/jbc.M401115200
  16. Zhang Y., Guo S., Xie C., and Fang J. Uridine Metabolism and its role in glucose, lipid, and amino acid homeostasis. Biomed. Res. Int., 7091718 (2020). doi: 10.1155/2020/7091718
  17. Mironova G. D., Khrenov M. O., Talanov E. Y., Glushkova O. V., Parfenyuk S. B., Novoselova T. V., Lunin S. M., Belosludtseva N. V., Novoselova E. G., and Lemasters J. J. The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice. Arch. Biochem. Biophys., 654, 70–76 (2018). doi: 10.1016/j.abb.2018.07.006
  18. Krylova I. B., Selina E. N., Bulion V. V., Rodionova O. M., Evdokimova N. R., Belosludtseva N. V., Shigaeva M. I., and Mironova G. D. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATPdependent potassium channel. Sci. Rep., 11 (1), 16999 (2019). doi: 10.1038/s41598-021-96562-7
  19. Belosludtseva N. V., Starinets V. S., Mikheeva I. B., Belosludtsev M. N., Dubinin M. V., Mironova G. D., and Belosludtsev K. N. Effect of chronic treatment with uridine on cardiac mitochondrial dysfunction in the C57BL/6 mouse model of high-fat diet-streptozotocininduced diabetes. Int. J. Mol. Sci., 23 (18), 10633 (2022). doi: 10.3390/ijms231810633
  20. Liu Z., Li W., Geng L., Sun L., Wang Q., Yu Y., Yan P., Liang Ch., Ren J., Song M., Zhao Q., Lei J., Cai Yu., Li J., Yan K., Wu Z., Chu Q., Li J., Wang S., Li Ch., Han J.-D. J., Hernandez-Benitez R., ShyhChang Ng., Belmonte J. C. I., Zhang W., Qu J., and Liu G.-H., Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting actor. Cell Discov., 8 (1), 6 (2022). doi: 10.1038/s41421-021-00361-3
  21. Yamamoto T., Koyama H., Kurajoh M., Shoji T., Tsutsumi Z., and Moriwaki Y. Biochemistry of uridine in plasma. Clin. Chim. Acta, 412 (19–20), 1712–1724 (2011). doi: 10.1016/j.cca.2011.06.006
  22. Krylova I. B., Kachaeva E. V., Rodionova O. M., Negoda A. E., Evdokimova N. R., Balina M. I., Sapronov N. S., and Mironova G. D. The cardioprotective effect of uridine and uridine-5'-monophosphate: the role of the mitochondrial ATP-dependent potassium channel. Exp. Gerontol., 41 (7), 697–703 (2006). doi: 10.1016/j.exger.2006.03.005
  23. Khunderyakova N. V., Yachkula T. V., Zakharchenko M. V., Plyasunova S. A., Sukhorukov V. S., Baranich, N. I., Litvinova E. G., Fedotcheva N., Schwartsburd P., and Kondrashova M., Cytobiochemical biomarkers of the state of mitochondria in Humans. I. A new assessment of Warburg effect by the ratio of lactate dehydrogenase to succinate dehydrogenase activity in lymphocytes as a distinct biomarker of pronounced differences between leukemia, norm and myopathy in young patients. J. World Mitochondria Soc., 2 (2) (2017). doi: 10.18143/JWMS_v2i2_1930
  24. Nichtova Z., Novotova M., Kralova E., and Stankovicova T. Morphological and functional characteristics of models of experimental myocardial injury induced by isoproterenol. Gen. Physiol. Biophys., 31 (2), 141–151 (2012). doi: 10.4149/gpb_2012_015
  25. Krestinin R., Baburina Y., Odinokova I., Kruglov A., Sotnikova L., and Krestinina O. The Effect of Astaxanthin on Mitochondrial Dynamics in Rat Heart Mitochondria under ISO-Induced Injury. Antioxidants (Basel), 12 (6), 1247 (2023). doi: 10.3390/antiox12061247
  26. Belosludtseva N. V., Pavlik L. L., Mikheeva I. B., Talanov E. Y., Serov D. A., Khurtin D. A., Belosludtsev K.N., and Mironova G. D. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int . J. Mol. Sci., 24 (24), 17300 (2023). doi: 10.3390/ijms242417300
  27. Feng W. and Li W. The study of ISO induced heart failure rat model. Exp. Mol. Pathol., 88 (2), 299–304 (2010). doi: 10.1016/j.yexmp.2009.10.011
  28. Pham V. A., Tran H. Th., Mai Th. Ph., Nguyen L. H., Nguyen V. H., Nguyen Th. H., Bui S. S., Vu A. V., Do H. Th., Trinh Q. V. Myocardial infarction model induced by isoproterenol in rats and potential cardiovascular protective effect of a nattokinase-containing hard capsule. Phytomed. Plus, 3, 100472, 2667–0313 (2023). doi: 10.1016/j.phyplu.2023.100472
  29. Xu X., Zhang X., Cheng S., Li Q., Chen C., and Ouyang M. Protective effect of uridine on atrial fibrillation: a Mendelian randomisation study. Sci. Rep., 13 (1), 19639 (2023). doi: 10.1038/s41598-023-47025-8
  30. Cheng T., Wang H., and Hu Y. The causal effects of genetically determined human blood metabolites on the risk of atrial fibrillation. Front. Cardiovasc. Med., 10, 1211458 (2023). doi: 10.3389/fcvm.2023.1211458

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies