Underwater Measurements of Transmitted Light Spectra in Stratified Water Bodies on the White Sea Coast as a Key to the Understanding of Pigment Composition of Phototrophs in the Chemocline Zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Measurements of the spectral composition of light at the boundary of the photic zone in seven coastal bodies of water, to varying degrees separated from the sea, exposed to the sea and freshwater lake showed that in marine and brackish water bodies green light is predominantly transmitted, and in lakes the top layer of which is freshwater, orange, red and far red light is absorbed. In meromictic reservoirs, the photic zone was limited by a colored layer of water with the massive development of phototrophic microorganisms. Their pigment composition and the spectral composition of transmitted light are well matched. The sea bays and lagoons were dominated by taxa with red pigments: phycoerythrin-545 from cryptophyte algae, or purple sulfur bacteria with the carotenoid okenone, or brown-colored green sulfur bacteria with isorenieratin and bacteriochlorophyll e. In the lakes the top layer of which is freshwater, unicellular algae or green sulfur bacteria with chlorobactene and bacteriochlorophyll d developed. The spectral range can serve as a selective factor that determines the composition of the community of phototrophs with structurally different antennas, but similar light absorption spectra.

About the authors

E. A Labunskaya

Department of Biology, M.V. Lomonosov Moscow State University

Email: styxelenalab@gmail.com
Moscow, Russia

D. A Voronov

A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Moscow, Russia

V. I Lobyshev

Department of Physics, M.V. Lomonosov Moscow State University

Moscow, Russia

E. D Krasnova

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

References

  1. Van der Weij-De Wit C. D., Doust A. B., van Stokkum I. H. M., Dekker J. P., Wil K. E., Curmi P. M. G., Scholes G. D., and van Grondelle R. How Energy Funnels from the Phycoerythrin Antenna Complex to Photosystem I and Photosystem II in Cryptophyte Rhodomonas CS24 Cells. J. Phys. Chem. B, 110 (49), 25066 (2006). doi: 10.1021/jp061546w
  2. Lokstein H., Renger G., and Gotze J. P. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules. 26 (11), 3378 (2021). doi: 10.3390/molecules26113378
  3. Arshad R., Saccon F., Bag P., Biswas A., Calvaruso C., Bhatti A. F., Grebe S., Mascoli V., Mahbub M., Muzzopappa F., Polyzois A., Schiphorst C., Sorrentino M., Streckaite S., van Amerongen H., Aro E.-M., Bassi R., Boekema E. J., Croce R., Dekker J., van Grondelle R., Jansson S., Kirilovsky D., Kouřil R., Michel S., Mullineaux C. W., Panzarova K., Robert B., Ruban A. V., van Stokkum I., Wientjes E., and Buchel C. A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiol., 189 (3), 1204–1219 (2022). doi: 10.1093/plphys/kiac175
  4. Stomp M., Huisman J., Stal L. J., and Matthijs H. C. P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J., 1 (4), 271–282 (2007).
  5. Holtrop T., Huisman J., Stomp M., Biersteker L., Aerts J., Grebert T., Partensky F., Garczarek L., and Woerd H. J. V. D. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat. Ecol. Evol., 5 (1), 55–66 (2020). doi: 10.1038/s41559-020-01330-x
  6. Краснова Е. Д. Экология меромиктических озер России. 1. Прибрежные морские водоемы. Водные ресурсы, 48 (3), 322 (2021).
  7. Krasnova E., Voronov D., Frolova N., Pantyulin A., and Samsonov T. Salt Lakes Separated from the White Sea. EARSeL eProceed., 14 (S1), 8–22 (2015). doi: 10.12760/02-2015-1-02
  8. Лосюк Г. Н., Кокрятская Н. М. и Краснова Е. Д. Сероводородное заражение прибрежных озер на разных стадиях изоляции от Белого моря. Океанология, 61 (3), 401–412 (2021).
  9. Krasnova E. D., Kharcheva A. V., Milyutina I. A., Voronov D. A., and Patsaeva S. V. Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods. J. Mar. Biol. Ass., 95 (8), 1579–1590 (2015). doi: 10.1017/S0025315415000582
  10. Krasnova E. D., Matorin D. N., Belevich T. A., Efimova L. E., Kharcheva A. V., Kokryatskaya N. M., Losyuk G. N., Todorenko D. A., Voronov D. A., and Patsaeva S. V. The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea. J. Oceanol. Limnol., 36 (6), 1962–1977 (2018). doi: 10.1007/s00343-0187323-2
  11. Краснова Е. Д., Воронов Д. А., Пацаева С. В., Кокрятская Н. М., Жадан А. Э. и А. Б. Цетлин. Внезапный замор бентоса из-за появления сульфидной зоны в губе Лобаниха в августе 2020 г. (Белое море, Кандалакшский залив). В сб. География: развитие науки и образования (Сб. статей по материалам международной науч.-практич. конф. «LXXIV Герценовские чтения») (Изд-во РГПУ им. А.И. Герцена, СПб, 2021), т. 1, сс. 313–317.
  12. Логвиненко А. Д., Антоновская К. А., Гришина Д.Ю., Дадыкин И. А., Киселев А. Д., Кроленко В. И., Лихачева Г. В., Уразаева А. О., Краснова Е. Д. и А. Б. Цетлин. Восстановление бентосного сообщества после кратковременной аноксии (замора) в арктической ковшовой губе (Белое море, Кандалакшский залив, о. Великий). В сб. Труды X международной науч.-практич. конф. «Морские исследования и образование» (MARESEDU2021) (Тверь: ООО ПолиПРЕСС, 2022), т. 2, сс. 115–118.
  13. Краснова Е. Д. и Воронов Д. А. Подводное меромиктическое озеро в бухте Биофильтров (Белое море, Кандалакшский залив, окрестности Беломорской биостанции МГУ). В сб. Геология морей и океанов (Материалы XXII Международной науч. конф. (Школы) по морской геологии) (ИО РАН, М., 2019), т. 3, сс. 165–169.
  14. Саввичев А. С., Кулакова А. А., Краснова Е. Д., Воронов Д. А., Кадников В. В., Белецкий А. В., Козяев В. В., Русанов И. И., Летарова М. А., Веслополовa Е. Ф., Беленковa В. В., Демиденко Н. А. и Горленко В. М. Микробное сообщество морского меромиктического желоба (Бухта Биофильтров), расположенного в Кандалакшском заливе Белого моря. Микробиология, 91 (4), 492–506 (2022).
  15. Krasnova E. D., Pantyulin A. N., Matorin D. N., Todorenko D. A., Belevich T. A., Milyutina I. A., and Voronov D. A. Cryptomonad alga Rhodomonas Sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea. Microbiology, 83 (3), 270–277 (2014). doi: 10.1134/S0026261714030102
  16. Grouzdev D., Gaisin V., Lunina O., Krutkina M., Krasnova E., Voronov D., Baslerov R., Sigalevich P., Savvichev A., and Gorlenko V. Microbial communities of stratified aquatic ecosystems of kandalaksha bay (white sea) shed light on the evolutionary history of green and brown morphotypes of chlorobiota. FEMS Microbiol. Ecol., 98 (10), fiac103 (2022). doi: 10.1093/femsec/fiac103
  17. Sokolovskaya Y. G., Krasnova E. D., Voronov D. A., Matorin D. N., Zhiltsova A. A., and S. V. Patsaeva. Optical proxies of euxinia: spectroscopic studies of CDOM, chlorophyll, and bacteriochlorophylls in the lagoon on Zeleny cape (the White Sea). Photonics, 10 (6), 672 (2023). doi: 10.3390/photonics10060672
  18. Savvichev A. S., Lunina O. N., Rusanov I. I., Zakharova E. E., Veslopolova E. F., and Ivanov M. V. Microbiological and isotopic geochemical investigation of lake Kislo-Sladkoe, a meromictic water body at the Kandalaksha bay shore (White sea). Microbiology, 83 (1–2), 56–66 (2014).
  19. Lunina O. N., Savvichev A. S., Krasnova E. D., Kokryatskaya N. M., Veslopolova E. F., Kuznetsov B. B., and Gorlenko V. M. Succession processes in the anoxygenic phototrophic bacterial community in lake Kislo-Sladkoe (Kandalaksha bay, White Sea). Microbiology, 85 (5), 531–544 (2016). doi: 10.1134/S0026261716050118
  20. Лосюк Г. Н., Краснова Е. Д., Кокрятская Н. М. и Воронов Д. А. Основные гидрологические параметры озера Большие Хрусломены (Кандалакшский залив Белого моря). География: развитие науки и образования. Коллективная монография по материалам ежегодной Всероссийской с международным участием науч.-практич. конф. «LXXII Герценовские чтения» (Астерион, СПб., 2019), т. 1, сс. 334–336 (2019).
  21. Emeliantsev P. S., Zhiltsova A. A., Krasnova E. D., Voronov D. A., Rymar V. V., and Patsaeva S. V. Quantification of chlorosomal bacteriochlorophylls using absorption spectra of green sulfur bacteria in natural water. Moscow Univ. Physics Bull., 75 (2), 137–142 (2020).
  22. Lunina O. N., Grouzdev D. S., Patsaeva S. V., Zhil’tsova A. A., Suzina N. E., Krasnova E. D., Voronov D. A., Kokryatskaya N. M., Veslopolova E. F., and Savvichev A. S. Anoxygenic phototrophic bacteria of the meromictic lake Bol’shie Khruslomeny (Oleniy island, Kandalaksha gulf, Murmansk oblast, Russia). Microbiology, 92 (6), 792–806 (2023). doi: 10.1134/S0026261723602051
  23. Lisitzin A. P., Vasil’chuk Yu. K., Shevchenko V. P., Budantseva N. A., Krasnova E. D., Pantyulin A. N., Filippov A. S., and Chizhova Ju. N. Oxygen isotope composition of water and snow-ice cover of isolated lakes at various stages of separation from the White sea. Dokl. Earth Sci., 449 (2), 406–412 (2013).
  24. Vasil’chuk Yu. K., Frolova N. L., Krasnova E. D., Budantseva N. A., Vasil’chuk A. C., Dobrydneva L. V., Efimova L. E., Terskaya E. V., and Chizhova Ju. N. Water isotopic-geochemical composition in the Trekhtsvetnoe meromictic lake on the White sea coast. Water Resources, 43 (5), 828–838 (2016).
  25. Savvichev A. S., Babenko V. V., Lunina O. N., Letarova M. A., Boldyreva D. I., Veslopolova E. F., Demidenko N. A., Kokryatskaya N. M., Krasnova E. D., Gaisin V. A., Kostryukova E. S., Gorlenko V. M., and Letarov A. V. Sharp water column stratification with an extremely dense microbial population in a small meromictic lake Trekhtzvetnoe. Environ. Microbiol., 20 (10), 3784–3797 (2018).
  26. Lunina O. N., Savvichev A. S., Babenko V. V., Boldyreva D. I., Kuznetsov B. B., Kolganova T. V., Krasnova E. D., Kokryatskaya N. M., Veslopolova E. F., Voronov D. A., Demidenko N. A., Letarova M. A., Letarov A. V., and Gorlenko V. M. Seasonal variations in the structure of an anoxygenic phototrophic bacterial community from the meromictic lake Trekhtsvetnoe (Kandalaksha bay, White sea). Microbiology, 88 (1), 100–114 (2019).
  27. Леонтьев П. А., Субетто Д. А., Репкина Т. Ю., Лудикова А. В., Кузнецов Д. Д., Кублицкий Ю. А., Сапелко Т. В., Зарецкая Н. Е., Фирсенкова В. М., Потахин М. С., Сырых Л. С. и Толстобров Д. С. Реконструкция относительного перемещения уровня моря в голоцене на северо-западе Онежского полуострова (губа Конюхова, Белое море) на основе палеолимнологических исследований. Изв. РАН. Сер. географическая, 86 (6), 933–945 (2022).
  28. Subetto D. A., Shevchenko V. P., Ludikova A. V., Kuznetsov D. D., Sapelko T. V., Lisitsyn A. P., Evzerov V. Ya., van Beek P., Souhaut M., and Subetto G. D. Chronology of isolation of the Solovetskii Archipelago lakes and current rates of lake sedimentation. Dokl. Earth Sci., 446 (1), 1042–1048 (2012). doi: 10.1134/S1028334X12090140
  29. Колька В. В., Корсакова О. П., Шелехова Т. С. и Толстоброва А. Н. Восстановление относительного положения уровня Белого моря в позднеледниковье и голоцене по данным литологического, диатомового анализов и радиоуглеродного датирования донных отложений малых озер в районе пос. Чупа (северная Карелия). Вестн. МГТУ 2, 255-268 (2015).
  30. Колька В. В. и Корсакова О. П. Положение береговой линии Белого моря и неотектонические движения на северо-востоке Фенноскандии в позднеледниковье и голоцене. В сб. Система Белого моря. Процессы осадконакопления, геология и история. (М., Научный мир, 2017), т. 4, сс. 214–241.
  31. Corner G. D., Yevzerov V. Y., Kolka V. V., and Moller J. J. Isolation basin stratigraphy and Holocene relative sea-level change at the Norwegian–Russian border north of Nikel, northwest Russia. Boreas, 28 (1), 146–166 (1999).
  32. Kublitskiy Y., Repkina T., Leontiev P., Shilova O., Zaretskaya N., Gurinov A., Lugovoy N., Subetto D., Yakovleva A., Nam S. I., Kim J.-H., Son Y.-J., and Peretrukhina A. Reconstruction of relative sea-level changes based on a multiproxy study of isolated basins on the Onega Peninsula (the White Sea, northwestern Russia). Quat. Int., 644–645, 79–95 (2023). doi: 10.1016/j.quaint.2022.04.016
  33. Kirk J. T. O. Light and photosynthesis in aquatic ecosystems (Cambridge University Press, 1983).
  34. Thoisen C., Hansen B. W., and Nielsen S. L. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin. MethodsX, 4, 209–213 (2017). doi: 10.1016/j.mex.2017.06.002
  35. Zhiltsova A. A., Krasnova E., Prosenkov A., Pelaez Andres A. I., Voronov D. A., and Patsaeva S. V. Depth distribution of optical characteristics, bacteriochlorophylls and metagenomic profiles of bacterial communities in meromictic lakes Trekhtzvetnoe and Elovoe in March 2021. In XV Int. Conf. on Pulsed Lasers and Laser Applications, Ed. by V. F. Tarasenko, A. V. Klimkin, and M. V. Trigub (Tomsk, 2021), pp. 54.
  36. Zhiltsova A. A., Krasnova E. D., Voronov D. A., Losyuk G. N., Kokryatskaya N. M., and Patsaeva S. V. Simultaneous detection of chlorosomal bacteriochlorophylls from green sulfur bacteria and phycobilins from cyanobacteria using synchronous fluorescence scans. In Optical Technologies for Biology and Medicine. Ed. by E. A. Genina and V. V. Tuchin (Saratov, 2022), p. 24.
  37. Pope R. M. and Fry E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt., 36, 8710–8723 (1997).
  38. Краснова Е. Д., Лобышев В. И., Лабунская Е. А., Воронов Д. А., Соколовская Ю. Г., Жильцова А. А. и Пацаева С. В. Спектральный состав света в хемоклине стратифицированных водоемов, находящихся на разных стадиях изоляции от Белого моря. Оптика атмосферы и океана, 37 (4), 307–315 (2024). doi: 10.15372/AOO20240407
  39. Gloe A., Pfennig N., Brockmann H. J., and TrowitzschW. A new bacteriochlorophyll from browncolored Chlorobiaceae. Archive Microbiol., 102, 103–109 (1975).
  40. Borrego C. Arellano J., Abella C., Gillbro T., and GarciaGil J. The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium Phaeobacteroides. Photosynth. Res., 60, 257 (1999). doi: 10.1023/A:1006230820007
  41. Haas S., De Beer D., Klatt J. M., Fink A., Rench R.M., Hamilton T. L., Meyer V., Kakuk B., and Macalady J. L. Low-light anoxygenic photosynthesis and Fe-S-biogeochemistry in a microbial mat. Front. Microbiol., 9, 858 (2018). doi: 10.3389/fmicb.2018.00858
  42. Carotenoids: Handbook, Ed. by Britton G., Liaaen-Jensen S., and Pfander H. (Birkhauser, Basel, 2004). doi: 10.1007/978-3-0348-7836-4
  43. Saer R. G. and Blankenship R. E. Light harvesting in phototrophic bacteria: structure and function. Biochem. J., 474 (13), 2107–2131 (2017). doi: 10.1042/BCJ20160753
  44. Stadnichuk I. N., Novikova T. M., Miniuk G. S., Boichenko V. A., Bolychevtseva Y. V., Gusev E. S., and Lukashev E. P. Phycoerythrin association with photosystem II in the cryptophyte alga Rhodomonas salina. Biochemistry (Moscow), 85 (6), 679–688 (2020). doi: 10.1134/S000629792006005X
  45. Kharcheva A. V., Zhiltsova A. A., Lunina O. N., Krasnova E. D., Voronov D. A., Savvichev A. S., and Patsaeva S. V.. Bacteriochlorophyll fluorescence of green sulfur bacteria in the anaerobic zone of two natural water bodies. Moscow Univ. Physics Bull., 73 (4), 377–381 (2018).
  46. Краснова Е. Д., Воронов Д. А., Жильцова А. А., Соколовская Ю. Г. и Пацаева С. В. Корреляция оптической плотности в ближнем УФ диапазоне и солености в поверхностных водах прибрежных стратифицированных водоемов на разных стадиях изоляции от Белого моря. В сб. География: развитие науки и образования (Матер. международной науч.-практич. конф. «LXXVI Герценовские чтения») (Изд-во РГПУ им. А. И. Герцена Санкт-Петербург, 2023), т. 1, сс. 250–254.
  47. Bloor J. and Grubb P. Growth and mortality in high and low light: Trends among 15 shade-tolerant tropical rain forest tree species. J. Ecol. 91, 77–85 (2003). doi: 10.1046/j.1365-2745.2003.00743.x
  48. Dale M. P. and Causton D. R. Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Funct. Ecol., 6 (2), 190–196 (1992). doi: 10.2307/2389754
  49. Tanaka R. and Tanaka A. Chlorophyll b is not just an accessory pigment but a regulator of the photosynthetic antenna. Porphyrins, 9, 240–245 (2000)
  50. Morales A. and Kaiser E. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci., 24 (11), 268 (2020). doi: 10.3389/fpls.2020.00268
  51. Kim J. Y., Lee J. H., and Park C. M. A multifaceted action of phytochrome B in plant environmental adaptation. Front. Plant Sci., 22 (12), 659712 (2021). doi: 10.3389/fpls.2021.659712
  52. Brouwer B., Gardestrom P., and Keech O. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the finetuning of chlorophyll biosynthesis. J. Exp. Bot., 65 (14), 4037 (2014).
  53. Martinez-Garcia J. F. and Rodriguez-Concepcion M. Molecular mechanisms of shade tolerance in plants. New Phytol., 239 (4), 1190 (2023).
  54. Takahashi M. and Mikami K. Blue–red chromatic acclimation in the red alga Pyropia yezoensis. Algal Res., 58, 102428 (2021).
  55. Stomp M., Huisman J., Voros L., Pick F. R., Laamanen M., Haverkamp T., and Stal L. J. Colourful Coexistence of Red and Green Picocyanobacteria in Lakes and Seas. Ecol. Lett., 10 (4), 290 (2007). doi: 10.1111/j.1461-0248.2007.01026.x
  56. Stomp M., Huisman J., De Jongh F., Veraart A. J, Gerla D., Rijkeboer M., Ibelings B. W., Wollenzien U. I., and Stal L. J. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature, 432 (7013), 104 (2004). doi: 10.1038/nature03044
  57. Маторин Д. Н., Тодоренко Д. А., Воронов Д. А., Горячев С. Н., Братковская Л. Б. и Краснова Е. Д. Особенности распределения и состояния фитопланктона на разных глубинах в озере КислоСладкое Белого моря. Вестн. МГУ. Сер. 16: Биология, 77 (3), 180–187 (2022).
  58. Плотников А. О., Селиванова Е. А., Хлопко Ю. А., Воронов Д. А., Маторин Д. Н., Тодоренко Д. А. и Краснова Е. Д. Структура и функционирование планктонных сообществ фототрофных и миксотрофных протистов в прибрежной лагуне «Озеро Кисло-Сладкое» (Белое море, Карельский берег). Изв. РАН. Сер. географическая, 86 (6), 985 (2022).
  59. Camacho A. and E. Vicente. Carbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain). FEMS Microbiol. Ecol., 25 (1), 11–22 (1998). doi: 10.1111/j.15746941.1998.tb00456.x
  60. Bidigare R. R., Ondrusek M. E., Morrow J. H., and Kiefer D. A. In-vivo absorption properties of algal pigments. Proc. SPIE 1302, Ocean Optics X, Ed. by R. W. Spinrad (Orlando, FL, United States, 1990). doi: 10.1117/12.21451
  61. Duxbury Z., Schliep M., Ritchie R. J., Larkum A. W. D., and Chen M. Photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll Dcontaining cyanobacterium, Acaryochloris Marina Photosynth. Res., 101 (1), 69–75 (2009). doi: 10.1007/s11120-009-9466-7
  62. Meleder V., Laviale M., Jesus B., Mouget J.L., Lavaud J., Kazemipour F., Launeau P., and Barille P. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms. J. Photochem. Photobiol. B: Biology, 129, 115 (2013). doi: 10.1016/j.jphotobiol.2013.10.005
  63. Millie D. F., Kirkpatrick G. J., and Vinyard B. T. Relating photosynthetic pigments and in vivo optical density spectra to irradiance for the Florida red-tide dinoflagellate Gymnodinium breve. Marine Ecol. Progr. Series 120, 65 (1995). doi: 10.3354/meps120065
  64. Zhang Y., Wang G., Sathyendranath S., Xu. W., XiaoY., and Jiang L. Retrieval of phytoplankton pigment composition from their in vivo absorption spectra. Remote Sens., 13 (24), 5112 (2021). doi: 10.3390/rs13245112
  65. Taniguchi M. and Lindsey J. S. Absorption and fluorescence spectral database of chlorophylls and analogues. Photochem. Photobiol., 97, 136–165 (2021). doi: 10.1111/php.13319
  66. Croce R. and van Amerongen H. Natural strategies photosynthetic light harvesting. Nat. Chem. Biol., 10, 492 (2014).
  67. Kharcheva A. V., Krasnova E. D., Voronov D. A., and Patsaeva S. V. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White sea. Proc. SPIE – The International Society for Optical Engineering, Ed. by E. A. Genina, V. L. Derbov, K. V. Larin, D. E. Postnov, and V. V. Tuchin (Saratov, 2015), p. 94480I.
  68. Oren A. Characterization of pigments of prokaryotes and their use in taxonomy and classification. Methods Microbiol., 38, 261–282 (2011). doi: 10.1016/B978-012-387730-7.00012-7
  69. Harada J., Mizoguchi T., Tsukatani Y., Noguchi M., and Tamiaki H. A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci. Rep., 2, 671 (2012). doi: 10.1038/srep00671
  70. Pšenčık J., Ma Y.-Z., Arellano J. B., Garcia-Gil J., and Gillbro T. Excitation energy transfer in chlorosomes of chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth. Res., 71 (1–2), 5–18 (2002). doi: 10.1023/A:1014943312031
  71. Premvardhan L., Sandberg D. J., Fey H., Birge R. R., Buchel C., and van Grondelle R. The charge-transfer properties of the S2 state of fucoxanthin in solution and in fucoxanthin chlorophyll-a/c2 protein (FCP) based on stark spectroscopy and molecular-orbital theory. J. Phys. Chem. B, 112 (37), 11838–11853 (2008). doi: 10.1021/jp802689p
  72. Šebelik V., West R., Trskova E. K., Kaňa R., and Polivka T. Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina. Biochim. Biophys. Acta – Bioenergetics, 1861 (11), 148280 (2020). doi: 10.1016/j.bbabio.2020.148280
  73. Caumette P., Guyoneaud R., Imhoff J. F., Suling J., and Gorlenko V. Thiocapsa Marina Sp. Nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int. J. System. Evol. Microbiol., 54 (4), 1031–1036. doi: 10.1099/ijs.0.02964-0
  74. Kereiche S., Kouril R., Oostergetel G. T., Fusetti F., Boekema E. J., Doust A. B., van der Weij-de Wit C. D., and Dekker J. P. Association of chlorophyll a/c(2) complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. Biochim. Biophys. Acta – Bioenergetics, 1777 (9), 1122 (2008).
  75. Polli D., Cerullo G., Lanzani G., De Silvestri S., Hashimoto H., and Cogdell R. J. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution. Biophys. J., 90 (7), 2486 (2006). doi: 10.1529/biophysj.105.069286
  76. Imhoff F. Biology of Green Sulfur Bacteria. In Encyclopedia of Life Sciences (John Wiley & Sons, Ltd: Chichester (2014). doi: 10.1002/9780470015902.a0000458.pub2
  77. Camacho A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in spanish stratified lakes. Limnetica, 25 (1), 453–478 (2006). doi: 10.23818/limn.25.32
  78. Mercier L., Peltomaa E., and Ojala A. Comparative analysis of phycoerythrin production in cryptophytes. J Appl. Phycol., 34, 789–797 (2022). doi: 10.1007/s10811-021-02657-z
  79. Zilinskas B. A., Greenwald L. S., Bailey C. L., and Kahn P. C. Spectral analysis of allophycocyanin I, II, III and B from Nostoc sp. phycobilisomes. Biochim. Biophys. Acta, 592 (2), 267–276 (1980). doi: 10.1016/0005-2728(80)90187-5
  80. Zhiltsova A. A., Kharcheva A. V., Krasnova E. D., Lunina O. N., Voronov D. A., Savvichev A. S., Gorshkova O. M., and Patsaeva S. V. Spectroscopic study of green sulfur bacteria in stratified water bodies of the Kandalaksha gulf of the White sea. Atmosphere. Ocean. Optics, 31 (4), 390–396 (2018). doi: 10.1134/S1024856018040188
  81. Vila X., Cristina X. P., Abella C. A., and Hurley J. P. Effects of gilvin on the composition and dynamics of metalimnetic communities of phototrophic bacteria in freshwater North-American lakes. J. Appl. Microbiol., 85 (S1), 138S–150S (1998). doi: 10.1111/j.1365-2672.1998.tb05293.x
  82. Montesinos E., Guerrero R., Abella C., and Esteve I. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl. Environ. Microbiol., 46, 1007–1016 (1983). doi: 10.1128/aem.46.5.1007-1016.1983
  83. Spangler L. C., Yu M., Jeffrey P. D., and Scholes G. D. Controllable phycobilin modification: an alternative photoacclimation response in cryptophyte algae. ACS Cent. Sci., 8 (3), 340–350. doi: 10.1021/acscentsci.1c01209

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies