The Influence of a Combination of Local Moderate Heating and Lighting on the Indicators of Water Metabolism of Intact Parts of Wheat Based on Thermal Imaging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Natural stress factors can lead to yield loss, but when they act locally, stress signals spread, modifying the physiological state and enhancing stress resistance in plants. The purpose of the work is to study the influence of a combination of local factors on indicators of water exchange during irrigation and drought. Wheat was grown in a grow room; drought stress was induced by stopping watering. The modified index of stomatal conductance measured by a thermal camera, leaf water conductivity, and relative leaf water content were used to assess water exchange. It was shown that the conductance index decreased under drought and had strong correlation with plant water status parameters (R > 0.7, p < 0.05). When the plants were watered using a combination of local factors, this led to a decline in the conductance index value versus the one obtained without a stimulus; the response became weaker with increasing distance from the stimulation zone. Soil drought stress reduced the amplitude of index changes. Exposure to local heating or lighting separately did not cause changes in the index of stomatal conductance. The results show that a combination of local heating and lighting stimulates stress signals that reduce water metabolism in wheat. Potentially, such signals may take the form of the electrical signals; however, the lack of changes in the index of stomatal conductance during drought using only local heating does not support this hypothesis.

About the authors

A. Yu Popova

Lobachevsky State University of Nizhny Novgorod

Email: lyubovsurova@mail.ru
Nizhny Novgorod, Russia

Yu. A Zolin

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

V. S Sukhov

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

E. M Sukhova

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

L. M Yudina

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

References

  1. Daryanto S., Wang L., and Jacinthe P. A. Global synthesis of drought effects on maize and wheat production. PLoS One, 11 (5), e0156362 (2016). doi: 10.1371/journal.pone.0156362
  2. Khan S., Anwar S., Yu S., Sun M., Yang Z., and Gao Z. Q. Development of drought-tolerant transgenic wheat: Achievements and limitations. Int. J. Mol. Sci., 20 (13), 3350 (2019). doi: 10.3390/ijms20133350
  3. Sallam A., Alqudah A. M, Dawood M. F. A., Baenziger P. S., and Borner A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci., 20 (13), 3137 (2019). doi: 10.3390/ijms20133137
  4. Kior A., Sukhov V., and Sukhova E. Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics, 8 (12), 582 (2021). doi: 10.3390/photonics8120582
  5. Jones H. G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural Forest Meteorol., 95 (3), 139–149 (1999). DOI: https://doi.org/10.1016/S01681923(99)00030-1
  6. Jones H. G., Serraj R., Loveys B. R., Xiong L., Wheaton A., and Price A. H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol., 36 (11), 978–989 (2009). doi: 10.1071/fp09123
  7. Helander J. D.,Vaidya A. S., and Cutler S. R. Chemical manipulation of plant water use. Bioorg. Med. Chem., 24 (3), 493–500 (2016). doi: 10.1016/j.bmc.2015.11.010
  8. Tardieu F., Simonneau T., and Muller B. The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annu. Rev. Plant Biol., 69, 733–759 (2018). doi: 10.1146/annurev-arplant-042817-040218
  9. Priya M., Dhanker O. P., Siddique K. H. M., Hanumantha Rao B., Nair R. M., and Pandey S. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor. Appl. Genet., 132 (6), 1607–1638 (2019). doi: 10.1007/s00122-019-03331-2
  10. Shah J. and Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci., 4, 30 (2013). doi: 10.3389/fpls.2013.00030
  11. Huber A. E. and Bauerle T. L. Long-distance plant signaling pathways in response to multiple stressors: The gap in knowledge. J. Exp. Bot., 67 (7), 2063–2079 (2016). doi: 10.1093/jxb/erw099
  12. Sukhov V., Sukhova E., and Vodeneev V. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol., 146, 63–84 (2019). doi: 10.1016/j.pbiomolbio.2018.11.009
  13. Fromm J. and Lautner S., Electrical signals and their physiological significance in plants. Plant Cell Environ., 30 (3), 249–257 (2007). doi: 10.1111/j.13653040.2006.01614.x
  14. Sukhov V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res., 130 (1–3), 373–387 (2016). doi: 10.1007/s11120-016-0270-x
  15. Szechyńska-Hebda M., Lewandowska M., and Karpiński S., Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol., 8, 684 (2017). doi: 10.3389/fphys.2017.00684
  16. Yudina L., Sukhova E., Popova A., Zolin Y., Abasheva K., Grebneva K., and Sukhov V. Local action of moderate heating and illumination induces propagation of hyperpolarization electrical signals in wheat plants. Front. Sustainable Food Syst., 6, 1153731 (2023). doi: 10.3389/fpls.2023.1153731
  17. Yudina L., Sukhova E., Popova A., Zolin Y., Abasheva K., Grebneva K., and Sukhov V. Hyperpolarization electrical signals induced by local action of moderate heating influence photosynthetic light reactions in wheat plants. Front. Plant Sci., 14, 1153731 (2023). doi: 10.3389/fpls.2023.1153731
  18. Пикуленко М. М. и Булычев А. А. Запускаемые светом потенциалы действия и изменения квантовой эффективности фотосистемы II в клетках Anthoceros. Физиология растений, 52 (5), 660–666 (2005). doi: 10.1007/s11183-005-0087-5, EDN: HSGOFJ
  19. Szechyńska-Hebda M., Kruk J., Gorecka M., Karpińska B., and Karpiński S. Evidence for light wavelengthspecific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell, 22 (7), 2201–2218 (2010). doi: 10.1105/tpc.109.069302
  20. Sukhov V. and Sukhova E. Analysis of the photosynthetic response induced by variation potential in geranium. Planta, 235 (4), 703–712 (2012). doi: 10.3390/rs11070810
  21. Yudina L., Popova A., Zolin Y., Sukhova E., and Sukhov V. Local action of increased pressure induces hyperpolarization electrical signals and influences photosynthetic light reactions in wheat plants. Plants, 12 (13), 2570 (2023). doi: 10.3390/plants12132570
  22. Hlavackova V., Krchnak P., Naus J., Novak O., Spundova M., and Strnad M. Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta, 225 (1), 235–244 (2006). doi: 10.1007/s00425-006-0325-x
  23. Grams T.E., Lautner S., Felle H. H., Matyssek R., and Fromm J. Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ., 32 (4), 319–326 (2009). doi: 10.1111/j.13653040.2008.01922.x
  24. Sukhova E., Mudrilov M., Vodeneev V., and Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. Photosynth Res., 136 (2), 215–228 (2018). doi: 10.1007/s11120017-0460-1
  25. Юдина Л. М., Шерстнева О. Н., Мысягин С. А., Воденеев В. А. и Сухов В. С. Влияние локального повреждения на транспирацию листьев гороха посевного при различной влажности воздуха. Физиология растений, 66 (1), 58–65 (2019). doi: 10.1134/S0015330319010160
  26. Miller G., Schlauch K., Tam R., Cortes D., Torres M. A. and Shulaev V. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal., 2 (84), ra45 (2009). doi: 10.1126/scisignal.2000448
  27. Hlavinka J., Nožkova-Hlavačkova V., Flokova K., Novak O., and Nauš J. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA. Plant Physiol Biochem, 54, 89–96 (2012). doi: 10.1016/j.plaphy.2012.02.014
  28. Stahlberg R., Cleland R.E., and Van Volkenburgh E. Slow wave potentials – a propagating electrical signal unique to higher plants. In Communications in Plants. Neuronal Aspects of Plant Life, Ed. by F. Baluska, S. Mancuso, and D. Volkmann, (Berlin, Springer, 2006), pp. 291–308. doi: 10.1007/978-3-540-285168_20
  29. Malone M. Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytol., 128 (1), 49–56 (1994). doi: 10.1111/j.14698137.1994.tb03985.x
  30. Vodeneev V., Akinchits E., and Sukhov V., Variation potential in higher plants: Mechanisms of generation and propagation. Plant Signal. Behav., 10 (9), e1057365 (2015). doi: 10.1080/15592324.2015.1057365

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies