Azobenzene-Based Voltage-Gated Sodium Channel Blockers with Light-Controlled Local Anesthetic and Antiarrhythmic Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to the synthesis of new light-controlled voltage-gated sodium (Nav) channel blockers based on azobenzene and the study of their local anesthetic and antiarrhythmic properties. The effect of ethercaine and two of its new derivatives on native Nav channels was studied in vitro using the patch-clamp method on isolated excitable cells (neurons and cardiomyocytes) of a rat, and local anesthetic activity of the compounds was evaluated on rabbit’s eye cornea. Studies of the effect of the obtained compounds on the conductivity of excitation waves in cardiomyocyte cultures using the optical mapping method were performed. The effective light-dependent biological activity of ethercaine and its derivatives allows us to consider the resulting compounds as potential tools for light-controlled local anesthesia, as well as for non-invasive ablation of arrhythmia in the heart in cardiology.

About the authors

A. N Noev

MIREA – Russian Technological University; P. Hertsen Moscow Oncology Research Institute – Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: aleksej-noev@yandex.ru
Moscow, Russia; Moscow, Russia

S. G Kovalenko

Moscow Institute of Physics and Technology (National Research University); M.F. Vladimirsky Moscow Region Research Clinical Institute

Dolgoprudny, Russia; Moscow, Russia

E. D Gataulina

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

St. Petersburg, Russia

E. A Turchaninova

Moscow Institute of Physics and Technology (National Research University)

Dolgoprudny, Russia

V. D Dzhabrailov

Moscow Institute of Physics and Technology (National Research University)

Dolgoprudny, Russia

A. A Aitova

Moscow Institute of Physics and Technology (National Research University),

Dolgoprudny, Russia

D. A Likhobabina

MIREA – Russian Technological University

Moscow, Russia

J. A Sutemieva

MIREA – Russian Technological University

Moscow, Russia

S. R Frolova

Moscow Institute of Physics and Technology (National Research University); M.F. Vladimirsky Moscow Region Research Clinical Institute

Dolgoprudny, Russia; Moscow, Russia

L. E Ruppel

Moscow Institute of Physics and Technology (National Research University)

Dolgoprudny, Russia

D. A Minakov

MIREA – Russian Technological University

Moscow, Russia

N. V Suvorov

MIREA – Russian Technological University

Moscow, Russia

P. V Ostroverkhov

MIREA – Russian Technological University

Moscow, Russia

Yu. L Vasil’ev

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Moscow, Russia

M. V Nikolaev

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

St. Petersburg, Russia

V. A Tsvelaya

Moscow Institute of Physics and Technology (National Research University); M.F. Vladimirsky Moscow Region Research Clinical Institute; ITMO University

Dolgoprudny, Russia; Moscow, Russia; St. Petersburg, Russia

K. I Agladze

Moscow Institute of Physics and Technology (National Research University); M.F. Vladimirsky Moscow Region Research Clinical Institute

Dolgoprudny, Russia; Moscow, Russia

M. A Grin

MIREA – Russian Technological University

Moscow, Russia

References

  1. Grant A. O. Sodium Channel Blockade as an Antiarrhythmic Mechanism. In Antiarrhythmic Drugs: Mechanisms of Antiarrhythmic and Proarrhythmic Actions, Ed. by G. Breithardt, M. Borggrefe, A. J. Camm, and M. Shenasa (Springer, Berlin–Heidelberg, 1995), pp. 3–22. doi: 10.1007/978-3-642-85624-2_1
  2. Roden D. M. Pharmacology and toxicology of Nav1.5Class 1 antiarrhythmic drugs. Card. Electrophysiol. Clin., 6 (4), 695–704 (2014). doi: 10.1016/j.ccep.2014.07.003
  3. Lagan G. and McLure H. A. Review of local anaesthetic agents. Curr. Anaesth. Crit. Care, 15 (4–5), 247–254 (2004). doi: 10.1016/j.cacc.2004.08.007
  4. Tikhonov D. B. and Zhorov B. S. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J. Gen. Physiol., 149 (4), 465–481 (2017). doi: 10.1085/jgp.201611668
  5. Fozzard H. A., Sheets M. F., and Hanck D. A. The sodium channel as a target for local anesthetic drugs. Front. Pharmacol., 2, 1–6 (2011). doi: 10.3389/fphar.2011.00068
  6. Arumugam S., Contino V., and Kolli S. Local anesthetic systemic toxicity (LAST) – a review and update. Curr. Anesthesiol, Rep., 10 (2), 218–226 (2020). doi: 10.1007/s40140-020-00381-x
  7. Gitman M. and Barrington M. J. Local Anesthetic Systemic Toxicity: A Review of Recent Case Reports and Registries. Reg. Anesth. Pain Med., 43 (2), 1 (2018). doi: 10.1097/AAP.0000000000000721
  8. Zhang W., Ji T., Li Y., Zheng Y., Mehta M., Zhao C., Liu A., and Kohane D. S. Light-triggered release of conventional local anesthetics from a macromolecular prodrug for on-demand local anesthesia. Nat. Commun., 11 (1), 2323 (2020). doi: 10.1038/s41467-02016177-w
  9. Moradkhani M. R., Karimi A., and Negahdari B. Nanotechnology application to local anaesthesia. Artif. Cells, Nanomedicine, Biotechnol., 46 (2), 355–360 (2018). doi: 10.1080/21691401.2017.1313263
  10. Fuchter M. J. On the promise of photopharmacology using photoswitches: a medicinal chemist’s perspective. J. Med. Chem., 63 (20), 11436–11447 (2020). doi: 10.1021/acs.jmedchem.0c00629
  11. Velema V. A., Szymanski W., and Feringa B. L. Photopharmacology: Beyond Proof of Principle. J. Am. Chem. Soc., 136 (6), 2178–2191 (2014). doi: 10.1021/ja413063e
  12. Rozhkov K. I., Yagudaeva E. Y., Sizova S. V., LazovM. A., Smirnova E. V., Zubov V. P., and Ischenko A. A. Characterization of iron-doped crystalline silicon nanoparticles and their modification with citrate anions for in vivo applications. Fine Chem. Technol., 16 (5), 414–425 (2021). doi: 10.32362/2410-6593-202116-5-414-425
  13. Broichhagen J., Frank J. A., and Trauner D. A roadmap to success in photopharmacology. Acc. Chem. Res., 48 (7), 1947–1960 (2015). doi: 10.1021/acs.accounts.5b00129
  14. Noev A., Kuznetsov N., Korenev G., Morozova N., Vasil’ev Y., Suvorov N., Diachkova E., Usachev M., Pankratov A., and Grin M. A Novel Photoswitchable Azobenzene-Containing Local Anesthetic Ethercaine with Light-Controlled Biological Activity In Vivo. Int. J. Mol. Sci., 23 (10), 5352 (2022). doi: 10.3390/ijms23105352
  15. Noev A., Morozova N., Suvorov N., Vasil’ev Y., Pankratov A., and Grin M. Development of a Dosage form for a Photoswitchable Local Anesthetic Ethercaine. Pharmaceuticals, 16 (10), 1398 (2023). doi: 10.3390/ph16101398
  16. Gazerani P. Shedding light on photo-switchable analgesics for pain. Pain Manag., 7 (2), 71–74 (2017). doi: 10.2217/pmt-2016-0039
  17. Frolova S. R., Gaiko O., Tsvelaya V. A., Pimenov O. Y., and Agladze K. I. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes. PLoS One, 11 (3), e0152018 (2016). doi: 10.1371/journal.pone.0152018
  18. Nizamieva A. A., Kalita I. Y., Slotvitsky M. M., Berezhnoy A. K., Shubina N. S., Frolova S. R., TsvelayaV. A., and Agladze K. I. Conduction of excitation waves and reentry drift on cardiac tissue with simulated photocontrol-varied excitability. Chaos, 33(2), (2023). doi: 10.1063/5.0122273
  19. Frolova S. R., Gorbunov V. S., Shubina N. S., Perepukhov A. M., Romanova S. G., and Agladze K. I. Stilbene derivative as a photosensitive compound to control the excitability of neonatal rat cardiomyocytes. Biosci. Rep., 39 (1), 1–14 (2019). doi: 10.1042/BSR20181849
  20. Mourot A., Fehrentz T., Le Feuvre Y., Smith C. M., Herold C., Dalkara D., Nagy F., Trauner D., and Kramer R. H. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods, 9 (4), 396–402 (2012). doi: 10.1038/nmeth.1897
  21. Mourot A., Herold C., Kienzler M. A., and Kramer R. H. Understanding and improving photocontrol of ion channels in nociceptors with azobenzene photo-switches. Br. J. Pharmacol., 175 (12), 2296–2311 (2018). doi: 10.1111/bph.13923
  22. Fehrentz T., Kuttruff C. A., Huber F. M. E., Kienzler M. A., Mayer P., and Trauner D. Exploring the Pharmacology and Action Spectra of Photochromic Open-Channel Blockers. ChemBioChem, 13 (12), 1746–1749 (2012). doi: 10.1002/cbic.201200216
  23. Schoenberger M., Damijonaitis A., Zhang Z., Nagel D., and Trauner D. Development of a New Photochromic Ion Channel Blocker via Azologization of Fomocaine. ACS Chem. Neurosci., 5 (7), 514–518 (2014). doi: 10.1021/cn500070w
  24. National Research Council. Guide for the Care and Use of Laboratory Animals: Eighth Edition. Washington (National Academies Press, 2011). doi: 10.17226/12910

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies