Antioxidant Properties of Plant Plastoquinone in vivo and in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Plastoquinone is a mobile electron carrier from photosystem II to the cytochrome b6/f complex in the photosynthetic electron transfer chain. In addition, plastoquinone together with many other isoprenoids fulfills antioxidant function, participating in plant defense against reactive oxygen species. This review describes reactions where plastoquinone interacts with the reactive oxygen species including singlet oxygen, superoxide anion radical and hydrogen peroxide in chloroplasts of higher plants. Moreover, a large number of studies investigating the effect of various stress factors on plastoquinone biosynthesis were analyzed and it has been found that the content of plastoquinone increases under almost all stress conditions. Thus, enhancement of the plastoquinone biosynthesis is one of the factors those influence plant sustainability what is necessary in the protection of the photosynthetic apparatus from oxidative degradation. One chapter is devoted to a description of methods for creating plants with the increased level of plastoquinone and to an assessment of the resistance of these plants to environmental factors. Besides, taking into account the high antioxidant activity of plastoquinone and its ability to diffuse in the lipid phase, the ways of practical application of plant plastoquinone as a protector of membrane structures from oxidation are discussed.

About the authors

D. V Vetoshkina

Institute of Basic Biological Problems, Russian Academy of Sciences

Pushchino, Russia

A. A Nikolaev

Institute of Basic Biological Problems, Russian Academy of Sciences

Pushchino, Russia

M. M Borisova-Mubarakshina

Institute of Basic Biological Problems, Russian Academy of Sciences

Email: mubarakshinamm@gmail.com
Pushchino, Russia

References

  1. Mubarakshina M. M. and Ivanov B. N. The Production and Scavenging of Reactive Oxygen Species in the Plastoquinone Pool of Chloroplast Thylakoid Membranes. Physiol. Plantarum, 140, 103–110 (2010). doi: 10.1111/j.1399-3054.2010.01391.x
  2. Kozuleva M. A., Ivanov B. N., Vetoshkina D. V., and Borisova-Mubarakshina M. M. Minimizing an Electron Flow to Molecular Oxygen in Photosynthetic Electron Transfer Chain: An Evolutionary View. Front. Plant Sci., 11 (2020). doi: 10.3389/fpls.2020.00211
  3. Noctor G., Veljovic-Jovanovic S., Driscoll S., Novitskaya L., and Foyer C. H. Drought and Oxidative Load in the Leaves of C3 Plants: A Predominant Role for Photorespiration? Ann. Bot., 89 (Spec No), 841–850 (2002). doi: 10.1093/aob/mcf096
  4. Noctor G., Mhamdi A., and Foyer C. H. The Roles of Reactive Oxygen Metabolism in Drought: Not so Cut and Dried. Plant Physiol., 164, 1636–1648 (2014). doi: 10.1104/pp.113.233478
  5. Steinhorst L. and Kudla J. Calcium and Reactive Oxygen Species Rule the Waves of Signaling. Plant Physiol., 163, 471–485 (2013). doi: 10.1104/pp.113.222950
  6. Kwak J. M., Mori I. C., Pei Z.-M., Leonhardt N., Torres M. A., Dangl J. L., Bloom R. E., Bodde S., Jones J. D. G., and Schroeder J. I. NADPH Oxidase AtrbohD and AtrbohF Genes Function in ROS-Dependent ABA Signaling in Arabidopsis. EMBO J., 22, 2623–2633 (2003). doi: 10.1093/emboj/cdg277
  7. Rudenko N. N., Vetoshkina D. V., Marenkova T. V., and Borisova-Mubarakshina M. M. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants, 12, 2014 (2023). doi: 10.3390/antiox12112014
  8. Kozuleva M., Klenina I., Proskuryakov I., Kirilyuk I., and Ivanov B. Production of Superoxide in Chloroplast Thylakoid Membranes: ESR Study with Cyclic Hydroxylamines of Different Lipophilicity. FEBS Lett., 585, 1067–1071 (2011). doi: 10.1016/j.febslet.2011.03.004
  9. Borisova M. M., Kozuleva M. A., Rudenko N. N., Naydov I. A., Klenina I. B., and Ivanov B. N. Photosynthetic Electron Flow to Oxygen and Diffusion of Hydrogen Peroxide through the Chloroplast Envelope via Aquaporins. Biochim. Biophys. Acta – Bioenergetics, 1817, 1314–1321 (2012). doi: 10.1016/j.bbabio.2012.02.036
  10. Mubarakshina M. M., Khorobrykh S. A., Kozuleva M. A., and Ivanov B. N. Intramembrane Formation of Hydrogen Peroxide during Oxygen Reduction in Thylakoids of Higher Plants. Dokl. Biochem. Biophys., 408, 113–116 (2006). doi: 10.1134/s160767290603001x
  11. Rennenberg A. P., Heinz Photooxidative Stress in Trees. In Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants (CRC Press, 1993). ISBN 978-1-351-07045-4.
  12. Gruszka J., Pawlak A., and Kruk J. Tocochromanols, Plastoquinol, and Other Biological Prenyllipids as Singlet Oxygen Quenchers—Determination of Singlet Oxygen Quenching Rate Constants and Oxidation Products. Free Radic. Biol. Med., 45, 920–928 (2008). doi: 10.1016/j.freeradbiomed.2008.06.025
  13. Mubarakshina M., Khorobrykh S., and Ivanov B. Oxygen Reduction in Chloroplast Thylakoids Results in Production of Hydrogen Peroxide inside the Membrane. Biochim. Biophys. Acta – Bioenergetics, 1757, 1496–1503 (2006). doi: 10.1016/j.bbabio.2006.09.004
  14. Ivanov B., Mubarakshina M., and Khorobrykh S. Kinetics of the Plastoquinone Pool Oxidation Following Illumination. FEBS Lett., 581, 1342–1346 (2007). doi: 10.1016/j.febslet.2007.02.044
  15. Vetoshkina D. V., Ivanov B. N., Proskuryakov I. I., and Borisova-Mubarakshina M. M. Involvement of the Chloroplast Plastoquinone Pool in the Mehler Reaction. Physiol. Plantarum, 161 (1), 45–55 (2017). doi: 10.1111/ppl.12560
  16. Borisova-Mubarakshina M. M., Naydov I. A., and Ivanov B. N. Oxidation of the Plastoquinone Pool in Chloroplast Thylakoid Membranes by Superoxide Anion Radicals. FEBS Lett., 592, 3221–3228 (2018). doi: 10.1002/1873-3468.13237
  17. Kruk J. and Trebst A. Plastoquinol as a Singlet Oxygen Scavenger in Photosystem II. Biochim. Biophys. Acta – Bioenergetics, 1777, 154–162 (2008). doi: 10.1016/j.bbabio.2007.10.008
  18. Ferretti U., Ciura J., Ksas B., Rac M., Sedlařova M., Kruk J., Havaux M., and Pospišil P. Chemical Quenching of Singlet Oxygen by Plastoquinols and Their Oxidation Products in Arabidopsis. Plant J., 95, 848–861 (2018). doi: 10.1111/tpj.13993
  19. Khorobrykh S. and Tyystjarvi E. Plastoquinol Generates and Scavenges Reactive Oxygen Species in Organic Solvent: Potential Relevance for Thylakoids. Biochim. Biophys. Acta – Bioenergetics, 1859, 1119–1131 (2018). doi: 10.1016/j.bbabio.2018.07.003
  20. Hundal T., Forsmark-Andree P., Ernster L., and Andersson B. Antioxidant Activity of Reduced Plastoquinone in Chloroplast Thylakoid Membranes. Arch. Biochem. Biophys., 324, 117–122 (1995). doi: 10.1006/abbi.1995.9920
  21. Maciejewska U., Polkowska-Kowalczyk L., Swiezewska E., and Szkopinska A. Plastoquinone: Possible Involvement in Plant Disease Resistance. Acta Biochim. Pol., 49, 775–780 (2002). DOI:024903775
  22. Szymańska R. and Kruk J. Plastoquinol Is the Main Prenyllipid Synthesized During Acclimation to High Light Conditions in Arabidopsis and Is Converted to Plastochromanol by Tocopherol Cyclase. Plant Cell Physiol., 51, 537–545 (2010). doi: 10.1093/pcp/pcq017
  23. Kruk J., Kubasik-Kladna K., and Aboul-Enein H. The Role Oxidative Stress in the Pathogenesis of Eye Diseases: Current Status and a Dual Role of Physical Activity. Mini Rev. Med. Chem., 16, 241–257 (2016).
  24. Lichtenthaler H. K. Biosynthesis, Accumulation and Emission of Carotenoids, α-Tocopherol, Plastoquinone, and Isoprene in Leaves under High Photosynthetic Irradiance. Photosynth. Res., 92, 163–179 (2007). doi: 10.1007/s11120-007-9204-y
  25. Ksas B., Alric J., Caffarri S., and Havaux M. Plastoquinone Homeostasis in Plant Acclimation to Light Intensity. Photosynth. Res., 152, 43–54 (2022). doi: 10.1007/s11120-021-00889-1
  26. Falk J., Andersen G., Kernebeck B., and Krupinska K. Constitutive Overexpression of Barley 4-Hydroxyphenylpyruvate Dioxygenase in Tobacco Results in Elevation of the Vitamin E Content in Seeds but Not in Leaves 1. FEBS Lett., 540, 35–40 (2003). doi: 10.1016/S0014-5793(03)00166-2
  27. Ksas B., Becuwe N., Chevalier A., and Havaux M. Plant Tolerance to Excess Light Energy and Photooxidative Damage Relies on Plastoquinone Biosynthesis. Sci. Rep., 5, 10919 (2015). doi: 10.1038/srep10919
  28. Afanas’ev I. B. Superoxide Ion: Chemistry and Biological Implications (CRC Press, 1991). ISBN 978-0-84935452-6.
  29. Khorobrykh S. A. and Ivanov B. N. Oxygen Reduction in a Plastoquinone Pool of Isolated Pea Thylakoids. Photosynth. Res., 71, 209–219 (2002). doi: 10.1023/A:1015583502345
  30. Khorobrykh S., Mubarakshina M., and Ivanov B. Photosystem I Is Not Solely Responsible for Oxygen Reduction in Isolated Thylakoids. Biochim. Biophys. Acta – Bioenergetics, 1657, 164–167 (2004). doi: 10.1016/j.bbabio.2004.04.009
  31. Kozuleva M. A., Petrova A. A., Mamedov M. D., Semenov A. Yu., and Ivanov B. N. O2 Reduction by Photosystem I Involves Phylloquinone under Steady-State Illumination. FEBS Lett., 588, 4364–4368 (2014). doi: 10.1016/j.febslet.2014.10.003
  32. Kozuleva M. A. and Ivanov B. N. Superoxide Anion Radical Generation in Photosynthetic Electron Transport Chain. Biochemistry (Moscow), 88, 1045–1060 (2023). doi: 10.1134/S0006297923080011
  33. McCauley S. W. and Melis A. Quantitation of Plastoquinone Photoreduction in Spinach Chloroplasts. Photosynth. Res., 8, 3–16 (1986). doi: 10.1007/BF00028472
  34. Kruk J. and Strzałka K. Dark Reoxidation of the PlastoquinonePool Is Mediated by the Low-Potential Form of Cytochrome b-559 in Spinach Thylakoids. Photosynth. Res., 62, 273–279 (1999). doi: 10.1023/A:1006374319191
  35. Rich P. R. and Harper R. Partition Coefficients of Quinones and Hydroquinones and Their Relation to Biochemical Reactivity. FEBS Lett., 269, 139–144 (1990). doi: 10.1016/0014-5793(90)81139-F
  36. Tullberg A., Alexciev K., Pfannschmidt T., and Allen J. F. Photosynthetic Electron Flow Regulates Transcription of the psaB Gene in Pea (Pisum Sativum L.) Chloroplasts Through the Redox State of the Plastoquinone Pool. Plant Cell Physiol., 41, 1045–1054 (2000). doi: 10.1093/pcp/pcd031
  37. Kramer D. M., Johnson G., Kiirats O., Edwards G. E. New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes. Photosynth. Res., 79, 209 (2004). doi: 10.1023/B:PRES.0000015391.99477.0d
  38. Toth S. Z., Schansker G., and Strasser R. J. A Non-Invasive Assay of the Plastoquinone Pool Redox State Based on the OJIP-Transient. Photosynth. Res., 2007, 93, 193–203 (2004). doi: 10.1007/s11120-007-9179-8
  39. Kalaji H. M., Schansker G., Ladle R. J., Goltsev V., Bosa K., Allakhverdiev S. I., Brestic M., Bussotti F., Calatayud A., Dąbrowski P., Elsheery N. I., Ferroni L., Guidi L., Hogewoning S. W., Jajoo A., Misra A. N., Nebauer S. G., Pancaldi S., Penella C., Poli D., Pollastrini M., Romanowska-Duda Z. B., Rutkowska B., Serodio J., Suresh K., Szulc W., Tambussi E., Yanniccari M., and Zivcak M. Frequently Asked Questions about in Vivo Chlorophyll Fluorescence: Practical Issues. Photosynth. Res., 122, 121–158 (2014). doi: 10.1007/s11120-014-0024-6
  40. Kruk J., Jemioła-Rzemińska M., Burda K., Schmid G. H., and Strzałka K. Scavenging of Superoxide Generated in Photosystem I by Plastoquinol and Other Prenyllipids in Thylakoid Membranes. Biochemistry, 42, 8501–8505 (2003). doi: 10.1021/bi034036q
  41. Khorobrykh S. A., Karonen M., and Tyystjarvi E. Experimental Evidence Suggesting That H2O2 Is Produced within the Thylakoid Membrane in a Reaction between Plastoquinol and Singlet Oxygen. FEBS Lett., 589, 779–786 (2015). doi: 10.1016/j.febslet. 2015.02.011
  42. Maroz A., Anderson R. F., Smith R. A. J., and Murphy M. P. Reactivity of Ubiquinone and Ubiquinol with Superoxide and the Hydroperoxyl Radical: Implications for in Vivo Antioxidant Activity. Free Radic. Biol. Med., 46, 105–109 (2009). doi: 10.1016/j.freeradbiomed. 2008.09.033
  43. Wardman P. Bioreductive Activation of Quinones: Redox Properties and Thiol Reactivity. Free Radic. Res. Commun., 8, 219–229 (1990). doi: 10.3109/10715769009053355
  44. Zhu B.-Z., Zhao H.-T., Kalyanaraman B., and Frei B. Metal-Independent Production of Hydroxyl Radicals by Halogenated Quinones and Hydrogen Peroxide: An ESR Spin Trapping Study. Free Radic. Biol. Med., 32, 465–473 (2002). doi: 10.1016/s0891-5849(01)008243
  45. Zhu B.-Z., Kalyanaraman B., and Jiang G.-B. Molecular Mechanism for Metal-Independent Production of Hydroxyl Radicals by Hydrogen Peroxide and Halogenated Quinones. Proc. Natl. Acad. Sci. USA, 104, 17575–17578 (2007). doi: 10.1073/pnas.0704030104
  46. Zhu B.-Z., Mao L., Huang C.-H., Qin H., Fan R.-M., Kalyanaraman B., and Zhu J.-G. Unprecedented Hydroxyl Radical-Dependent Two-Step Chemiluminescence Production by Polyhalogenated Quinoid Carcinogens and H2O2. Proc. Natl. Acad. Sci. USA, 109, 16046–16051 (2012). doi: 10.1073/pnas.1204479109
  47. Sanchez-Cruz P., Santos A., Diaz S., and Alegria A. E. Metal-Independent Reduction of Hydrogen Peroxide by Semiquinones. Chem. Res. Toxicol., 27, 1380–1386 (2014). doi: 10.1021/tx500089x
  48. Vilyanen D. V., Naydov I, Ivanov B, Kozuleva M, and Borisova-Mubarakshina M. Mechanisms of the Plastoquinone Pool Oxidation in the Dark after Illumination. Available online: https://www.researchsquare. com (accessed on 24 January 2024). doi: 10.21203/rs.3.rs-3025337/v1
  49. Rutherford A. W., Krieger-Liszkay A. Herbicide-Induced Oxidative Stress in Photosystem II. Trends Biochem. Sci., 26, 648–653 (2001). doi: 10.1016/s09680004(01)01953-3
  50. Neverov K. V. and Krasnovsky Jr A. A. Phosphorescence Analysis of the Chlorophyll Triplet States in Preparations of Photosystem II. Biophysics, 49, 469–474 (2004).
  51. Krieger-Liszkay A. Singlet Oxygen Production in Photosynthesis. J. Exp. Botany, 56, 337–346 (2005). doi: 10.1093/jxb/erh237
  52. Yadav D. K., Prasad A., Kruk J., and Pospišil P. Evidence for the Involvement of Loosely Bound Plastosemiquinones in Superoxide Anion Radical Production in Photosystem II. PLoS One, 9, e115466 (2014). doi: 10.1371/journal.pone.0115466
  53. Munekage Y., Hashimoto M., Miyake C., Tomizawa K.-I., Endo T., Tasaka M., and Shikanai T. Cyclic Electron Flow around Photosystem I Is Essential for Photosynthesis. Nature, 429, 579–582 (2004). doi: 10.1038/nature02598
  54. Borisova-Mubarakshina M. M., Vetoshkina D. V., and Ivanov B. N. Antioxidant and Signaling Functions of the Plastoquinone Pool in Higher Plants. Physiol. Plantarum, 166, 181–198 (2019). doi: 10.1111/ppl.12936.
  55. Pshybytko N. L., Kruk J., Kabashnikova L. F., and Strzalka K. Function of Plastoquinone in Heat Stress Reactions of Plants. Biochim. Biophys. Acta – Bioenergetics, 1777, 1393–1399 (2008). doi: 10.1016/j.bbabio.2008.08.005
  56. Strzałka K., Szymańska R., Świeżewska E., SkorupińskaTudek K., and Suwalsky M. Tocochromanols, Plastoquinone and Polyprenols in Selected Plant Species from Chilean Patagonia. Acta Biol. Cracoviensia. Ser. Botanica, 51 (2009).
  57. Gray G. R., Ivanov A. G., Krol M., and Huner N. P. A. Adjustment of Thylakoid Plastoquinone Content and Photosystem I Electron Donor Pool Size in Response to Growth Temperature and Growth Irradiance in Winter Rye (Secale Cereale L.). Photosynth. Res., 56, 209–221 (1998) doi: 10.1023/A:1006049925042
  58. Spicher L., Glauser G., and Kessler F. Lipid Antioxidant and Galactolipid Remodeling under Temperature Stress in Tomato Plants. Front. Plant Sci, 7, 167 (2016). doi: 10.3389/fpls.2016.00167
  59. Griffith M., Elfman B., and Camm E. L. Accumulation of Plastoquinone A during Low Temperature Growth of Winter Rye. Plant Physiol., 74, 727–729 (1984). doi: 10.1104/pp.74.3.727
  60. Wiciarz M., Niewiadomska E., and Kruk J. Effects of Salt Stress on Low Molecular Antioxidants and Redox State of Plastoquinone and P700 in Arabidopsis Thaliana (Glycophyte) and Eutrema Salsugineum (Halophyte). Photosynthetica, 56, 811–819 (2018). doi: 10.1007/s11099-017-0733-0
  61. Pilarska M., Niewiadomska E., and Kruk J. SalinityInduced Changes in Plastoquinone Pool Redox State in Halophytic Mesembryanthemum Crystallinum L. Sci. Rep., 13, 11160 (2023) doi: 10.1038/s41598-02338194-7
  62. Nosek M., Kornaś A., Kuźniak E., and Miszalski Z. Plastoquinone Redox State Modifies Plant Response to Pathogen. Plant Physiol. Biochem., 96, 163–170 (2015). doi: 10.1016/j.plaphy.2015.07.028
  63. Desikan R., Soheila A.-H., Hancock J. T., and Neill S. J. Regulation of the Arabidopsis Transcriptome by Oxidative Stress. Plant Physiol., 127 (1), 159–172 (2001). doi: 10.1104/pp.127.1.159
  64. Apel K. and Hirt H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol., 55, 373–399 (2004). doi: 10.1146/annurev.arplant.55.031903.141701
  65. Borisova-Mubarakshina M. M., Ivanov B. N., Vetoshkina D. V., Lubimov V. Y., Fedorchuk T. P., Naydov I. A., Kozuleva M. A., Rudenko N. N., Dall’Osto L., Cazzaniga S., and Bassi R. Long-Term Acclimatory Response to Excess Excitation Energy: Evidence for a Role of Hydrogen Peroxide in the Regulation of Photosystem II Antenna Size. J. Exp. Bot., 66, 7151–7164 (2015). doi: 10.1093/jxb/erv410
  66. Foyer C. H. and Noctor G. Redox Signaling in Plants. Antioxid. Redox Signal., 18, 2087–2090 (2013). doi: 10.1089/ars.2013.5278
  67. Austin J. R., Frost E., Vidi P.-A., Kessler F., and Staehelin L. A. Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast That Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes. Plant Cell, 18, 1693–1703 (2006). doi: 10.1105/tpc.105.039859
  68. Brehelin C. and Kessler F. The Plastoglobule: A Bag Full of Lipid Biochemistry Tricks. Photochem. Photobiol., 84, 1388–1394 (2008). doi: 10.1111/j.17511097.2008.00459.x
  69. Pralon T., Collombat J., Pipitone R., Ksas B., Shanmugabalaji V., Havaux M., Finazzi G., Longoni P., and Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the Proton Gradient Regulation 6 Phenotype in Arabidopsis Thaliana. Front. Plant Sci., 11, 337 (2020). doi: 10.3389/fpls.2020.00337
  70. Ducluzeau A.-L., Wamboldt Y., Elowsky C. G., Mackenzie S. A., Schuurink R. C., and Basset G. J. C. Gene Network Reconstruction Identifies the Authentic Trans-Prenyl Diphosphate Synthase That Makes the Solanesyl Moiety of Ubiquinone-9 in Arabidopsis. Plant J., 69, 366–375 (2012). doi: 10.1111/j.1365313X.2011.04796.x
  71. Block A., Fristedt R., Rogers S., Kumar J., Barnes B., Barnes J., Elowsky C. G., Wamboldt Y., Mackenzie S. A., Redding K., Merchant S. S., and Basset G. J. Functional Modeling Identifies Paralogous Solanesyl-Diphosphate Synthases That Assemble the Side Chain of Plastoquinone-9 in Plastids *. J. Biol. Chem., 288, 27594–27606 (2013). doi: 10.1074/jbc.M113.492769
  72. Jun L., Saiki R., Tatsumi K., Nakagawa T., and Kawamukai M. Identification and Subcellular Localization of Two Solanesyl Diphosphate Synthases from Arabidopsis Thaliana. Plant Cell Physiol., 45, 1882–1888 (2004). doi: 10.1093/pcp/pch211
  73. Liu M., Ma Y., Du Q., Hou X., Wang M., and Lu S. Functional Analysis of Polyprenyl Diphosphate Synthase Genes Involved in Plastoquinone and Ubiquinone Biosynthesis in Salvia Miltiorrhiza. Front. Plant Sci., 10, 893 (2019). doi: 10.3389/fpls.2019.00893
  74. Kim S.-E., Bian X., Lee C.-J., Park S.-U., Lim Y.-H., Kim B. H., Park W. S., Ahn M.-J., Ji C. Y., Yu Y., XieY., Kwak S.-S., and Kim H. S. Overexpression of 4Hydroxyphenylpyruvate Dioxygenase (IbHPPD) Increases Abiotic Stress Tolerance in Transgenic Sweetpotato Plants. Plant Physiol. Biochem., 167, 420–429 (2021). doi: 10.1016/j.plaphy.2021.08.025
  75. Kim E.-H., Lee Y., and Kim H. U. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis. Plant Cell, 27, 2956–2971 (2015). doi: 10.1105/tpc.15.00707
  76. Kim E.-H., Lee D.-W., Lee K.-R., Jung S.-J., Jeon J.-S., and Kim H. U. Conserved Function of Fibrillin5 in the Plastoquinone-9 Biosynthetic Pathway in Arabidopsis and Rice. Front. Plant Sci., 8 (2017). doi: 10.3389/fpls.2017.01197
  77. Santos-Pirath I. M., Walter L. O., Maioral M. F., Philippus A. C., Zatelli G. A., Horta P. A., Colepicolo P., Falkenberg M. D. B., and Santos-Silva M. C. Apoptotic Events Induced by a Natural Plastoquinone from the Marine Alga Desmarestia Menziesii in Lymphoid Neoplasms. Exp. Hematol., 86, 67-77.e2 (2020). doi: 10.1016/j.exphem.2020.05.003
  78. Iwashima M., Mori J., Ting X., Matsunaga T., Hayashi K., Shinoda D., Saito H., Sankawa U., and Hayashi T. Antioxidant and Antiviral Activities of Plastoquinones from the Brown Alga Sargassum Micracanthum, and a New Chromene Derivative Converted the Plastoquinones. Biol. Pharm. Bull., 28, 374–377 (2005). doi: 10.1248/bpb.28.374
  79. Mori J., Iwashima M., Wakasugi H., Saito H., Matsunaga T., Ogasawara M., Takahashi S., Suzuki H., and Hayashi T. New Plastoquinones Isolated from the Brown Alga, Sargassum Micracanthum. Chem. Pharm. Bull. (Tokyo), 53, 1159–1163 (2005). doi: 10.1248/cpb.53.1159
  80. Markovets A. M., Fursova A. Z., and Kolosova N. G. Therapeutic Action of the Mitochondria-Targeted Antioxidant SkQ1 on Retinopathy in OXYS Rats Linked with Improvement of VEGF and PEDF Gene Expression. PLoS One, 6, e21682 (2011). doi: 10.1371/journal.pone.0021682
  81. Shinn L. J. and Lagalwar S. Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ. Antioxidants, 10, 573 (2021). doi: 10.3390/antiox10040573
  82. Isaev N. K., Stelmashook E. V., Genrikhs E. E., Korshunova G. A., Sumbatyan N. V., Kapkaeva M. R., and Skulachev V. P. Neuroprotective Properties of MitochondriaTargeted Antioxidants of the SkQ-Type. Rev. Neurosci., 27, 849–855 (2016). doi: 10.1515/revneuro-2016-0036
  83. Bayrak N., Yıldırım H., Yıldız M., Radwan M. O., Otsuka M., Fujita M., Tuyun A. F., and Ciftci H. I. Design, Synthesis, and Biological Activity of Plastoquinone Analogs as a New Class of Anticancer Agents. Bioorg. Chem., 92, 103255 (2019). doi: 10.1016/j.bioorg.2019.103255
  84. Ciftci H. I., Bayrak N., Yıldırım H., Yıldız M., Radwan M. O., Otsuka M., Fujita M., and Tuyun A. F. Discovery and Structure–Activity Relationship of Plastoquinone Analogs as Anticancer Agents against Chronic Myelogenous Leukemia Cells. Archiv der Pharmazie, 352, 1900170 (2019). doi: 10.1002/ardp.201900170
  85. Janeczko M., Demchuk O. M., Strzelecka D., Kubiński K., and Masłyk M. New Family of Antimicrobial Agents Derived from 1,4-Naphthoquinone. Eur. J. Med. Chem., 124, 1019–1025 (2016). doi: 10.1016/j.ejmech.2016.10.034
  86. Shrestha J. P., Baker C., Kawasaki Y., Subedi Y. P., Vincent de Paul N. N., Takemoto J. Y., and Chang C. W. T. Synthesis and Bioactivity Investigation of Quinone-Based Dimeric Cationic Triazolium Amphiphiles Selective against Resistant Fungal and Bacterial Pathogens. Eur. J. Med. Chem., 126, 696–704 (2017). doi: 10.1016/j.ejmech.2016.12.008
  87. Ryu C.-K., Nho J.-H., Jin G., Oh S. Y., and Choi S. J. Synthesis of Benzofuro[6,7-d]Thiazoles, Benzofuro[7,6-d]Thiazoles and 6-Arylaminobenzo[d]Thiazole4,7-Diones as Antifungal Agent. Chem. Pharm. Bull. (Tokyo), 62, 668–674 (2014). doi: 10.1248/cpb.c14-00146
  88. Tuyun A. F., Yıldız M., Bayrak N., Yıldırım H., Mataracı Kara E., Jannuzzi A. T., and Ozbek Celik B. Discovery of a New Family of Heterocyclic Amine Linked Plastoquinone Analogs for Antimicrobial Evaluation. Drug Dev. Res., 80, 1098–1109 (2019). doi: 10.1002/ddr.21591
  89. Davids H., Theunissen R., Chakravorty S., Mohammed R., Frost C., van Otterlo W. A. L., and de Koning C. B. Aminonaphthoquinones as Potential Anti-Breast Cancer Agents. Afr. J. Pharm. Pharmacol., 6, 3102–3112 (2012). doi: 10.5897/AJPP.12.087
  90. Langsjoen P. H. and Langsjoen A. M. Coenzyme Q10 in Cardiovascular Disease with Emphasis on Heart Failure and Myocardial Ischaemia. Asia Pacific Heart J., 7, 160–168 (1998). doi: 10.1016/S13280163(98)90022-7
  91. Shults C. W. Coenzyme Q10 in Neurodegenerative Diseases. Curr. Med. Chem., 10, 1917–1921 (2003). doi: 10.2174/0929867033456882
  92. Ryu H. and Ferrante R. J. Emerging Chemotherapeutic Strategies for Huntington’s Disease. Expert Opin. Emerging Drugs, 10, 345–363 (2005). doi: 10.1517/14728214.10.2.345
  93. Hodges S., Hertz N., Lockwood K., and Lister R. CoQ_{10}: Could It Have a Role in Cancer Management? Biofactors, 9, 365–370 (1999).
  94. Brea-Calvo G., Rodriguez-Hernandez A., FernandezAyala D. J. M., Navas P., and Sanchez-Alcazar J. A. Chemotherapy Induces an Increase in Coenzyme Q10 Levels in Cancer Cell Lines. Free Radic. Biol. Med., 40, 1293–1302 (2006). doi: 10.1016/j.freeradbiomed. 2005.11.014
  95. Nakazawa H., Ikeda K., Shinozaki S., Yasuhara S., YuY.-M., Martyn J. A. J., Tompkins R. G., Yorozu T., Inoue S., and Kaneki M. Coenzyme Q10 Protects against Burn-Induced Mitochondrial Dysfunction and Impaired Insulin Signaling in Mouse Skeletal Muscle. FEBS Open Biol., 9, 348–363 (2019). doi: 10.1002/2211-5463.12580
  96. Wu Y., Hao C., Liu X., Han G., Yin J., Zou Z., Zhou J., and Xu C. MitoQ Protects against Liver Injury Induced by Severe Burn plus Delayed Resuscitation by Suppressing the mtDNA-NLRP3 Axis. Int. Immunopharmacol., 80, 106189 (2020). doi: 10.1016/j.intimp.2020.106189
  97. Vilyanen D. V., Pashkevich N. I., Borisova-Mubarakshina M. M., and Osochuk S. S. Pathogenetic Mechanisms of Burn Pathology Associated with Oxidative Membrane Damage and Methods of Their Correction. Biophysics, 68, 129–136 (2023). doi: 10.1134/S0006350923010190
  98. Borisova-Mubarakshina M. M., Ivanov B. N., Orekhova N. I., and Osochuk S. S. Antioxidant Properties of Plastoquinone and Prospects of Its Practical Application. Biophysics, 63, 888–894 (2018). doi: 10.1134/S0006350918060040

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies