The Effect of Cationic Antiseptics on Spectral Characteristics and Electron Transport in Isolated Photosynthetic Complexes of Photosystems I and II

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effects of cationic antiseptics (used in micromolar concentrations) on active PS II core complexes isolated from spinach plants with an intact water oxidation complex and on PS I core complexes from the cyanobacterium Synechocystis sp. PCC6803 were studied. Out of the antiseptics studied (miramistin, chlorhexidine, octenidine and picloxidine) octenidine had the greatest effect. It was concluded that it exerts its action on PS II primarily through the influence on the structure of the light-harvesting antenna (CP43 and CP47) that deliver excitation energy to the reaction center. As a result, the chlorophyll molecules in this structure are destabilized and their optical and functional characteristics change. Similar effects were also observed in cyanobacterial PS I complexes. In addition, the antiseptic influenced the rate of the establishment of the equilibrium distribution of excited states across spectral forms in the antenna complex of PS I. A significant effect of octenidine on the electron transfer rate in the PS I complex was also found: in its presence, the recombination of photo-separated charges between the photoactive pigment P700 and the terminal acceptor FA/FB occurs twice as fast.

About the authors

V. Z Pashchenko

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

E. P Lukashev

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

M. D Mamedov

A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

D. A Gvozdev

Department of Biology, M.V. Lomonosov Moscow State University

Email: danil131054@mail.ru
Moscow, Russia

B. N Korvatovsky

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

P. P Knox

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

M. G Strahovskaya

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

References

  1. Lawrence J. R., Zhu B., Swerhone G. D. W., Topp E., Roy J., Wassenaar L. I., Rema T., and Korber D. R. Community-level assessment of the effects of the broad-spectrum antimicrobial chlorhexidine on the outcome of river microbial biofilm development. Appl. Environ. Microbiol., 74, 3541 (2008) doi: 10.1128/AEM.02879-07
  2. Ostman M., Lindberg R. H., Fick J., Bjorn E., and Tysklind M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res., 115, 318 (2017). doi: 10.1016/j.watres.2017.03.011
  3. Jesus F. T., Oliveira R., Silva A., Catarino A. L., SoaresA. M. V. M., Nogueira A. J. A., and Domingues I. Lethal and sub lethal effects of the biocide chlorhexidine on aquatic organisms. Ecotoxicology, 22, 1348–1358 (2013). doi: 10.1007/s10646-013-1121-6
  4. Gilbert P. and Moore L. E. Cationic antiseptics: diversity of action under a common epithet. J. Appl. Microbiol., 99, 703 (2005). doi: 10.1111/j.13652672.2005.02664.x
  5. Kholina E. G., Kovalenko I. B., Bozdaganyan M. E., Strakhovskaya M. G., and Orekhov P. S. Cationic antiseptics facilitate pore formation in model bacterial membranes. J. Phys. Chem. B, 124, 8593 (2020). doi: 10.1021/acs.jpcb.0c07212
  6. Kholina E., Bozdaganyan M., Strakhovskaya M., and Kovalenko I. Interaction of cationic antiseptics with cardiolipin-containing model bacterial membranes. Med. Extrem., 3, 36 (2021).
  7. Strakhovskaya M. G., Lukashev E. P., Korvatovskiy B. N., Kholina E. G., Seifullina N. Kh., Knox P. P., and Paschenko V. Z. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. Photosynth. Res., 147, 197–209 (2021). doi: 10.1007/s11120-020-00807-x
  8. Knox P. P., Lukashev E. P., Korvatovskiy B. N., Strakhovskaya M. G., Makhneva Z. K., Bol’shakov M. A., and Paschenko V. Z. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. Photosynth, Res., 153, 103–112 (2022). doi: 10.1007/s11120-02200909-8
  9. McEwan A. G. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek, 66(1-3), 151-164 (1994). doi: 10.1007/BF00871637
  10. Reszczyńska E. and Hanaka A. Lipids composition in plant membranes. Cell Biochem. Biophys., 78, 401–414 (2020). doi: 10.1007/s12013-020-00947-w
  11. Photosystem I: the light-driven plastocyanin: ferredoxinoxidoreductase. Ed. by J. H. Golbeck (Springer, New York, 2006).
  12. Kern J. and Renger G. Photosystem II: Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth. Res., 94, 183–202 (2007). doi: 10.1007/s11120-007-9201-1
  13. Teodor A. H. and Bruce B. D. Putting photosystem I to work: truly green energy. Trends Biotechnol., 38, 1329 (2020). doi: 10.1016/j.tibtech.2020.04.004
  14. Kobayashi K., Yoshihara A., and Kubota-Kawai H. Evolutionary implications from lipids in membrane bilayers and photosynthetic complexes in cyanobacteria and chloroplasts J. Biochem., 174, 399 (2023). doi: 10.1093/jb/mvad058
  15. Jia Y., Huang Y., Ma J., Zhang S., Liu J., Li T., and Song L. Toxicity of the disinfectant benzalkonium chloride (C14) towards cyanobacterium Microcystis results from its impact on the photosynthetic apparatus and cell metabolism. J. Environ. Sci. (China), 135, 198 (2024). doi: 10.1016/j.jes.2022.11.007
  16. Grotjohann I., Jolley C., and Fromme P. Evolution of photosynthesis and oxygen evolution: Implications from the structural comparison of photosystems I and II. Phys. Chem. Chem. Phys., 6, 4743 (2004). doi: 10.1039/B408980D
  17. Krausz E., Hughes J. L., Smith P., Pace R. and Arskold S. P. Oxygen-evolving photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Photochem. Photobiol. Sci., 4, 744–753 (2005). doi: 10.1039/b417905f
  18. Loll B., Kern J., Saenger W., Zouni A., and Biesiadka J. Towards complete cofactor arrangement in the 3.0A resolution structure of photosystem II. Nature, 438, 1040 (2005). doi: 10.1038/nature04224
  19. Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., and Kraus N. Three-dimensional structure of cyanobacterial photosystem I at 2.5A resolution. Nature, 411, 909 (2001). doi: 10.1038/35082000
  20. Haag E., Irrgang K. D., Boekema E. J., and Renger G. Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity. Eur. J. Biochem., 189, 47 (1990). doi: 10.1111/j.1432-1033.1990.tb15458.x
  21. Porra R. J., Thompson W. A., and Kriedemann P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta, 975, 384 (1989). doi: 10.1016/S0005-2728(89)80347-0
  22. Smart L., Anderson S., and McIntosh L. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J., 10, 3289 (1991). doi: 10.1002/j.14602075.1991.tb04893.x
  23. Shen G., Zhao J., Reimer S. K., Antonkine M. L., Cai Q., Weiland S. M., Golbeck J. H., and Bryant D. A. Inactivation of the Ruba gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. Pcc 7002 causes a loss of photosystem I activity. J. Biol. Chem., 277, 20343 (2002). doi: 10.1074/jbc.M201103200
  24. Maksimov E. G., Sluchanko N. N., Slonimskiy Y. B., Slutskaya E. A., Stepanov A. V., ArgentovaStevens A. M., Shirshin E. A., Tsoraev G. V., Klementiev K. E., Slatinskaya O. V., Lukashev E. P., FriedrichT., Paschenko V. Z., and Rubin A. B. The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci. Rep., 7, 15548 (2017). doi: 10.1038/s41598-017-15520-4
  25. Shan J., Wang J., Ruan X., Li L., Gong Y., Zhao N., and Kuang T. Changes of absorption spectra during heat-induced denaturation of photosystem II core antenna complexes CP43 and CP47: revealing the binding states of chlorophyll molecules in these two complexes. Biochim. Biophys. Acta, 1504, 396 (2001). doi: 10.1016/S0005-2728(00)00270-X
  26. de Paula J. C., Liefshitz A., Hinsley S., Lin W., ChopraV., Long K., Williams S. A., Betts S., and Yocum C. F. Structure-function relationships in the 47-kDa antenna protein and its complex with the photosystem II reaction center core: insights from picosecond fluorescence decay kinetics and resonance Raman spectroscopy Biochemistry, 33, 1455 (1994). doi: 10.1021/bi00172a023
  27. Turconi S., Kruip J., Schweitzer G., Rogner M., and Holzwarth A. R. A comparative fluorescence kinetics study of photosystem I monomers and trimers from Synechocystis PCC 6803 Photosynth. Res., 49, 263 (1996). doi: 10.1007/BF00034787
  28. Cherubin A., Destefanis L., Bovi M., Perozeni F., Bargigia I., Valbuena G. de la Cruz, D’Andrea C., Romeo A., Ballottari M., and Perduca M. Encapsulation of photosystem I in organic microparticles increases its photochemical activity and stability for ex vivo photocatalysis. ACS Sustain. Chem. Eng., 7, 10435 (2019). doi: 10.1021/acssuschemeng.9b00738
  29. Toporik H., Khmelnitskiy A., Dobson Z., Riddle R., Williams D., Lin S., Jankowiak R., and Mazor Y. The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nat. Commun., 11, 5279 (2020). doi: 10.1038/s41467-020-18884-w
  30. Haehnel W., Holzwarth A. R., and Wendler J. Picosecond fluorescence kinetics and energy transfer in the antenna chlorophylls of green algae. Photochem. Photobiol., 37, 435 (1983). doi: 10.1111/j.17511097.1983.tb04497.x
  31. Karukstis K. K. and Sauer K. Organization of the photosynthetic apparatus of the chlorina-f2 mutant of barley using chlorophyll fluorescence decay kinetics. Biochim. Biophys. Acta - Bioenergetics, 766, 148 (1984). doi: 10.1016/0005-2728(84)90226-3
  32. Moya I., Hodges M., and Barbet J.-C. Modification of room-temperature picosecond chlorophyll fluorescence kinetics in green algae by photosystem II trap closure. FEBS Lett., 198, 256 (1986). doi: 10.1016/00145793(86)80416-1
  33. Hodges M. and Moya I. Time-resolved chlorophyll fluorescence studies on pigment-protein complexes from photosynthetic membranes. Biochim. Biophys. Acta, 935, 41(1988). doi: 10.1016/0005-2728(88)90106-5
  34. Keuper H. J. K. and Sauer K. Effect of photosystem II reaction center closure on nanosecond fluorescence relaxation kinetics. Photosynth. Res., 20, 85 (1989). doi: 10.1007/BF00028623
  35. Haehnel W., Holzwarth A. R., and Wendler J. Picosecond fluorescence kinetics and energy transfer in the antenna chlorophylls of green algae. Photochem. Photobiol., 37, 435 (1983). doi: 10.1111/j.1751-1097.1983.tb04497.x
  36. van der Weij-de Wit C. D., Dekker J. P., van Grondelle R., and van Stokkum I. H. M. Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. J. Phys. Chem. A, 11, 3947 (2011). doi: 10.1021/jp1083746
  37. Andrizhiyevskaya E. G., Frolov D., van Grondelle R., and Dekker J. P. On the role of the CP47 core antenna in the energy transfer and trapping dynamics of photosystem II. Chem. Chem. Phys., 6, 4810 (2004). doi: 10.1039/B411977K
  38. van Mieghem F. J. E., Searle G. F. W., Rutherford A. W. and Schaafsma T. J. The influence of the double reduction of QA on the fluorescence decay kinetics of photosystem II. Biochim. Biophys. Acta, 1100, 198 (1992). doi: 10.1016/0005-2728(92)90082-D
  39. Gobets B., van Stokkum I. H. M., Rogner M., Kruip J., Schlodder E., Karapetyan N. V., Dekker J. P., and van Grondelle R. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys. J., 81, 407 (2001). doi: 10.1016/S00063495(01)75709-8
  40. Byrdin M., Rimke I., Schlodder E., Stehlik D., and Roelofs T. A. Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongates with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transferlimited? Biophys. J., 79, 992 (2000). doi: 10.1016/S0006-3495(00)76353-3
  41. Steffen R., Kelly A. A., Huyer J., Dormann P., and Renger G. Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry, 44, 3134 (2005). doi: 10.1021/bi048465f
  42. Vassiliev I. R., Jung Y.-S., Mamedov M. D., Semenov A. Yu., and Golbeck J. H. Near-IR absorbance changes and electrogenic reactions in the microsecondto-second time domain in photosystem I. Biophys. J., 72, 301 (1997). doi: 10.1016/S00063495(97)78669-7
  43. Gvozdev D. A., Lukashev E. P., Gorokhov V. V., and Paschenko V. Z. Photophysical properties of upconverting nanoparticle–phthalocyanine complexes. Biochemistry (Moscow), 84, 911(2019). doi: 10.1134/S0006297919080078

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies