Photochemical Energy Conversion of Far-Red Light in Photosystem I Reaction Centers from Cyanobacterium Acaryochloris marina

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Conversion of near-infrared light energy by photosynthetic pigment-protein complexes has been the focus of intensive research in recent years because of the discovery of cyanobacteria with photosynthetic apparatus, which contains chlorophyll f and d that can absorb long-wave light. Among these cyanobacteria, Acaryochloris marina occupies a special place. Its photosystem I contains predominantly chlorophyll d, it is the component of the special P740 pair with the absorption spectrum shifted to the red region by 40 nm. This causes a decrease in the energy of the excited state of the special P740 pair by ~0.1 eV as opposed to photosystem I that contains chlorophyll a molecules. The complexes of photosystem I from A. Marina have some other particularities; they are: four molecules of chlorophyll a of the reaction center are replaced by chlorophyll d molecules, and the third pair of chlorophyll a molecules involved in electron transfer is replaced by pheophytin a molecules. The presence of spectrally diverse cofactors (chlorophyll d and pheophytin a molecules) has made it possible to reliably identify the intermediate compounds of the primary reactions of primary charge separation in photosystem I. This review presents the findings of a research study on photochemical energy conversion in the reaction centers of photosystem I from A. marina and potential mechanisms that compensate energy losses during the utilization of low-energy far-red light for photo-synthesis.

About the authors

A. A Petrova

A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University

Email: draparnaldia@gmail.com
Moscow, Russia

A. P. Casazza

Photosynthesis Research Unit, National Research Council of Italy

Milano, Italy

S. Santabarbara

Photosynthesis Research Unit, National Research Council of Italy

Milano, Italy

D. A Cherepanov

A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

References

  1. Manning W. M. and Strain H. H. Chlorophyll D, a green pigment of red algae. J. Biol. Chem., 151 (1), 1–19 (1943). doi: 10.1016/s0021-9258(18)72109-1
  2. Tomo T. and Allakhverdiev S. I. Chlorophyll species and their functions in the photosynthetic energy conversion. In Photosynthesis: Molecular approaches to solar energy conversion (Advances in photosynthesis and respiration, vol. 47), Ed. by J. Shen, K. Satoh, and S. I. Allakhverdiev (Springer, Cham), pp. 133–161. doi: 10.1007/978-3-030-67407-6_5
  3. Miyashita H., Ikemoto H., Kurano N., Adachi K., Chihara M., and Miyachi S. Chlorophyll d as a major pigment. Nature, 383 (6599), 402 (1996). doi: 10.1038/383402a0
  4. Li Y., Scales N., Blankenship R. E., Willows R. D., and Chen M. Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f. Biochim. Biophys. Acta – Bioenerg., 1817 (8), 1292–1298 (2012). doi: 10.1016/j.bbabio.2012.02.026
  5. Hoober J. K., Eggink L. L., and Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth. Res., 94 (2–3), 387–400 (2007). doi: 10.1007/s11120-007-9181-1
  6. Nugent J. H. A., Purton S., and Evans M. C. W. Oxygenic Photosynthesis in algae and cyanobacteria: electron transfer in photosystems I and II. In Photosynthesis in Algae (Advances in Photosynthesis and Respiration, vol 14), Ed. by Larkum A. W. D., Douglas S. E., and Raven J. A. (Springer, Dordrecht, 2003), pp. 133–156. doi: 10.1007/978-94-007-1038-2_7
  7. Allakhverdiev S. I., Tsuchiya T., Watabe K., Kojima A., Los D. A., Tomo T., Klimov V. V., and Mimuro M. Redox potentials of primary electron acceptor quinone molecule (Q A)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc. Natl. Acad. Sci. USA, 108 (19), 8054–8058 (2011). doi: 10.1073/pnas.1100173108
  8. Razeghifard M. R., Chen M., Hughes J. L., Freeman J., Krausz E., and Wydrzynski T. Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Biochemistry, 44 (33), 11178–11187 (2005). doi: 10.1021/bi048314c
  9. Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., and Krauβ N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 ? resolution. Nature, 411 (6840), 909–917 (2001). doi: 10.1038/35082000
  10. Gobets B., Van Stokkum I. H. M., Van Mourik F., Dekker J. P., and Van Grondelle R. Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from synechocystis PCC 6803 and Synechococcus elongatus. Biophys. J., 85 (6), 3883–3898 (2003). doi: 10.1016/S0006-3495(03)74803-6
  11. Herascu N., Hunter M. S., Shafiei G., Najafi M., Johnson T. W., Fromme P., and Zazubovich V. Spectral hole burning in cyanobacterial photosystem I with P700 in oxidized and neutral states. J. Phys. Chem. B, 120 (40), 10483–10495 (2016). doi: 10.1021/acs.jpcb.6b07803
  12. Hatazaki S., Sharma D. K., Hirata S., Nose K., IyodaT., Kolsch A., Lokstein H., and Vacha M. Identification of short- and long-wavelength emitting chlorophylls in cyanobacterial photosystem i by plasmonenhanced single-particle spectroscopy at room temperature. J. Phys. Chem. Lett., 9 (22), 6669–6675 (2018). doi: 10.1021/acs.jpclett.8b03064
  13. Byrdin M., Jordan P., Krauss N., Fromme P., Stehlik D., and Schlodder E. Light harvesting in photosystem I: Modeling based on the 2.5-A structure of photosystem I from Synechococcus elongatus. Biophys. J., 83 (1), 433–457 (2002). doi: 10.1016/S00063495(02)75181-3
  14. Yang M., Damjanović A., Vaswani H. M., and Fleming G. R. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys. J., 85 (1), 140–158 (2003). doi: 10.1016/S0006-3495(03)74461-0
  15. Kramer T., Noack M., Reimers J. R., Reinefeld A., Rodriguez M., and Yin S. Energy flow in the Photosystem I supercomplex: Comparison of approximative theories with DM-HEOM. Chem. Phys., 515 262–271 (2018). doi: 10.1016/j.chemphys.2018.05.028
  16. Akhtar P., Caspy I., Nowakowski P. J., Malavath T., Nelson N., Tan H. S., and Lambrev P. H. Two-dimensional electronic spectroscopy of a minimal photosystem I complex reveals the rate of primary charge separation. J. Am. Chem. Soc., 143 (36), 14601–14612 (2021). doi: 10.1021/jacs.1c05010
  17. Muller M. G., Niklas J., Lubitz W., and Holzwarth A. R. Ultrafast transient absorption studies on photosystem i reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys. J., 85 (6), 3899–3922 (2003). doi: 10.1016/s0006-3495(03)74804-8
  18. Li Y., Van Der Est A., Lucas M. G., Ramesh V. M., Gu F., Petrenko A., Lin S., Webber A. N., Rappaport F., and Redding K. Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Proc. Natl. Acad. Sci. USA, 103 (7), 2144–2149 (2006). doi: 10.1073/pnas.0506537103
  19. Cherepanov D. A., Shelaev I. V., Gostev F. E., Mamedov M. D., Petrova A. A., Aybush A. V., Shuvalov V. A., Semenov A. Y., and Nadtochenko V. A. Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the Q Y band. Biochim. Biophys. Acta - Bioenerg., 1858 (11), 895–905 (2017). doi: 10.1016/j.bbabio.2017.08.008
  20. Srinivasan N. and Golbeck J. H. Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. Biochim. Biophys. Acta, 1787 (9), 1057–88 (2009). doi: 10.1016/j.bbabio.2009.04.010
  21. Santabarbara S., Heathcote P., and Evans M. C. W. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron-sulfur cluster FX. Biochim. Biophys. Acta - Bioenerg., 1708 (3), 283–310 (2005). doi: 10.1016/j.bbabio.2005.05.001
  22. Muller M. G., Slavov C., Luthra R., Redding K. E., and Holzwarth A. R. Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc. Natl. Acad. Sci. USA, 107 (9), 4123–4128 (2010). doi: 10.1073/pnas.0905407107
  23. Kaucikas M., Nurnberg D., Dorlhiac G., Rutherford A. W., and van Thor J. J. Femtosecond visible transient absorption spectroscopy of chlorophyll f-containing photosystem I. Biophys. J., 112 (2), 234–249 (2017). doi: 10.1016/j.bpj.2016.12.022
  24. Van Stokkum I. H. M., Desquilbet T. E., Van Der WeijDe Wit C. D., Snellenburg J. J., Van Grondelle R., Thomas J. C., Dekker J. P., and Robert B. Energy transfer and trapping in red-chlorophyll-free photosystem I from Synechococcus WH 7803. J. Phys. Chem. B, 117 (38), 11176–11183 (2013). doi: 10.1021/jp401364a
  25. Shelaev I. V., Gostev F. E., Mamedov M. D., Sarkisov O. M., Nadtochenko V. A., Shuvalov V. A., and Semenov A. Y. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim. Biophys. Acta - Bioenerg., 1797 (8), 1410–1420 (2010). doi: 10.1016/j.bbabio.2010.02.026
  26. Petrova A. A., Boskhomdzhieva B. K., Milanovsky G. E., Koksharova O. A., Mamedov M. D., Cherepanov D. A., and Semenov A. Y. Interaction of various types of photosystem I complexes with exogenous electron acceptors. Photosynth. Res., 133 (1–3), 175–184 (2017). doi: 10.1007/s11120-017-0371-1
  27. Milanovsky G. E., Petrova A. A., Cherepanov D. A., and Semenov A. Y. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors. Photosynth. Res., 133 (1–3), 185–199 (2017). doi: 10.1007/s11120-017-0366-y
  28. Bjorn L. O., Papageorgiou G. C., Blankenship R. E., and Govindjee. A viewpoint: Why chlorophyll a? Photosynth. Res., 99 (2), 85–98 (2009). doi: 10.1007/s11120-008-9395-x
  29. Hu Q., Miyashita H., Iwasaki I., Kurano N., Miyachi S., Iwaki M., and Itoh S. A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA, 95 (22), 13319–13323 (1998). doi: 10.1073/pnas.95.22.13319
  30. Tomo T., Kato Y., Suzuki T., Akimoto S., Okubo T., Noguchi T., Hasegawa K., Tsuchiya T., Tanaka K., Fukuya M., Dohmae N., Watanabe T., and Mimuro M. Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J. Biol. Chem., 283 (26), 18198–18209 (2008). doi: 10.1074/jbc.M801805200
  31. Akiyama M., Miyashita H., Kise H., Watanabe T., Miyachi S., and Kobayashi M. Detection of chlorophyll d’ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal. Sci., 17 (1), 205–208 (2001). doi: 10.2116/analsci.17.205
  32. Akiyama M., Miyashita H., Kise H., Watanabe T., Mimuro M., Miyachi S., and Kobayashi M. Quest for minor but key chlorophyll molecules in photosynthetic reaction centers - Unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth. Res., 74 (2), 97–107 (2002). doi: 10.1023/A:1020915506409
  33. Sivakumar V., Wang R., and Hastings G. Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Biophys. J., 85 (5), 3162–3172 (2003). doi: 10.1016/S00063495(03)74734-1
  34. Mino H., Kawamori A., Aoyama D., Tomo T., IwakiM., and Itoh S. Proton ENDOR study of the primary donor P740+, a special pair of chlorophyll d in photosystem i reaction center of Acaryochloris marina. Chem. Phys. Lett., 411 (1–3), 262–266 (2005). doi: 10.1016/j.cplett.2005.06.033
  35. Hamaguchi T., Kawakami K., Shinzawa-Itoh K., InoueKashino N., Itoh S., Ifuku K., Yamashita E., Maeda K., Yonekura K., and Kashino Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat. Commun., 12 (1), 1–10 (2021). doi: 10.1038/s41467-021-22502-8
  36. Xu C., Zhu Q., Chen J., Shen L., Yi X., Huang Z., Wang W., Chen M., Kuang T., Shen J., Zhang X., and Han G. A unique photosystem I reaction center from a chlorophyll d‐containing cyanobacterium Acaryochloris marina. J. Integr. Plant Biol., 63 (10), 1740–1752 (2021). doi: 10.1111/jipb.13113
  37. Kumazaki S., Abiko K., Ikegami I., Iwaki M., and Itoh S. Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. FEBS Lett., 530 (1–3), 153–157 (2002). doi: 10.1016/S00145793(02)03446-4
  38. Kumazaki S., Iwaki M., Ikegami I., Kandori H., Yoshihara K., and Itoh S. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor. J. Phys. Chem., 98 (43), 11220–11225 (1994). doi: 10.1021/j100094a033
  39. Savikhin S., Xu W., Martinsson P., Chitnis P. R., and Struve W. S. Kinetics of charge separation and A0- → A1 electron transfer in photosystem I reaction centers. Biochemistry, 40 (31), 9282–9290 (2001). doi: 10.1021/bi0104165
  40. Holzwarth A. R., Muller M. G., Niklas J. and Lubitz W. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys. J., 90 (2), 552–565 (2006). doi: 10.1529/biophysj.105.059824
  41. Donato M. Di, Stahl A. D., Van Stokkum I. H. M., Grondelle R. Van, and Groot M. L. Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy. Biochemistry, 50 (4), 480–490 (2011). doi: 10.1021/bi101565w
  42. Nurnberg D. J., Morton J., Santabarbara S., Telfer A., Joliot P., Antonaru L. A., Ruban A. V., Cardona T., Krausz E., Boussac A., Fantuzzi A., and Rutherford A. W.Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science, 360 (6394), 1210–1213 (2018). doi: 10.1126/science.aar8313
  43. Zamzam N., Kaucikas M., Nurnberg D. J., Rutherford A. W., and Van Thor J. J. Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I. Phys. Chem. Chem. Phys., 21 (3), 1224–1234 (2019). doi: 10.1039/c8cp05627g
  44. Melkozernov A. N., Lin S., and Blankenship R. E. Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry, 39 (6), 1489–1498 (2000). doi: 10.1021/bi991644q
  45. Savikhin S. and Jankowiak R. Mechanism of primary charge separation in photosynthetic reaction centers. In The Biophysics of Photosynthesis (Biophysics for the Life Sciences, vol 11) Ed. by J. Golbeck and A. van der Est (Springer, New York, 2014), pp. 193–240. doi: 10.1007/978-1-4939-1148-6_7
  46. Byrdin M., Rimke I., Schlodder E., Stehlik D., and Roelofs T. A. Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongates with P700 in the reduced and oxidized state: Are the kinetics of excited state decay trap-limited or transferlimited? Biophys. J., 79 (2), 992–1007 (2000). doi: 10.1016/S0006-3495(00)76353-3
  47. Savikhin S., Xu W., Chitnis P. R. and Struve W. S. Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: Roles of P700 and A0. Biophys. J., 79 (3), 1573–1586 (2000). doi: 10.1016/S00063495(00)76408-3
  48. Cherepanov D. A., Shelaev I. V., Gostev F. E., Nadtochenko V. A., Xu W., Golbeck J. H., and Semenov A. Y. Symmetry breaking in photosystem I: ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors. Photochem. Photobiol. Sci., 20 (9), 1209–1227 (2021). doi: 10.1007/s43630-021-00094-y
  49. Trissl H. W. Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: Implications for the trapping mechanism. Photosynth. Res., 54 (3), 237–240 (1997). doi: 10.1023/A:1005981016835
  50. Brettel K. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophys. Acta – Bioenerg., 1318 (3), 322–373 (1997). doi: 10.1016/S0005-2728(96)00112-0
  51. Petrova A. A., Casazza A. P., Shelaev I. V., Gostev F. E., Aybush A. V., Nadtochenko V. A., Semenov A. Y., Santabarbara S., and Cherepanov D. A. Role of pheophytin a in the primary charge separation of photosystem I from Acaryochloris marina: Femtosecond optical studies of excitation energy and electron transfer reactions. Biochim. Biophys. Acta - Bioenerg., 1864 (3), 148984 (2023). doi: 10.1016/j.bbabio.2023.148984
  52. Cherepanov D. A., Shelaev I. V., Gostev F. E., Aybush A. V., Mamedov M. D., Shuvalov V. A., Semenov A. Y., and Nadtochenko V. A. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. Photosynth. Res., 146, 55–73 (2020). doi: 10.1007/s11120-020-00731-0
  53. Cherepanov D. A., Shelaev I. V., Gostev F. E., Petrova A., Aybush A. V., Nadtochenko V. A., Xu W., Golbeck J. H., and Semenov A. Y. Primary charge separation within the structurally symmetric tetrameric Chl2APAPBChl2B chlorophyll exciplex in photosystem I. J. Photochem. Photobiol. B Biol., 217 112154 (2021). doi: 10.1016/j.jphotobiol.2021.112154
  54. Schenderlein M., Cetin M., Barber J., Telfer A., and Schlodder E. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. Biochim. Biophys. Acta - Bioenerg., 1777 (11), 1400–1408 (2008). doi: 10.1016/j.bbabio.2008.08.008
  55. Eijckelhoff C. and Dekker J. P. A routine method to determine the chlorophyll a, pheophytin a and β-carotene contents of isolated Photosystem II reaction center complexes. Photosynth. Res., 52 (1), 69–73 (1997). doi: 10.1023/A:1005834006985
  56. Dashdorj N., Xu W., Martinsson P., Chitnis P. R., and Savikhin S. Electrochromic shift of chlorophyll absorption in photosystem I from Synechocystis sp. PCC 6803: a probe of optical and dielectric properties around the secondary electron acceptor. Biophys. J., 86 (5), 3121–3130 (2004). doi: 10.1016/S0006-3495(04)74360-X
  57. Chauvet A., Dashdorj N., Golbeck J. H., JohnsonT. W., and Savikhin S. Spectral resolution of the primary electron acceptor A0 in Photosystem I. J. Phys. Chem. B, 116 (10), 3380–6 (2012). doi: 10.1021/jp211246a
  58. Mokvist F., Mamedov F. and Styring S. Defining the far-red limit of photosystem I: the primary charge separation is functional to 840 nm. J. Biol. Chem., 289 (35), 24630–9 (2014). doi: 10.1074/jbc.M114.555649
  59. Schlodder E., Lendzian F., Meyer J., Cetin M., Brecht M., Renger T., and Karapetyan N. V. Longwavelength limit of photochemical energy conversion in Photosystem I. J. Am. Chem. Soc., 136 (10), 3904–3918 (2014). doi: 10.1021/ja412375j
  60. Bailleul B., Johnson X., Finazzi G., Barber J., Rappaport F., and Telfer A. The thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d-dominated cyanobacterium, Acaryochloris marina. J. Biol. Chem., 283 (37), 25218–25226 (2008). doi: 10.1074/jbc.M803047200
  61. Golbeck J. H., Parrett K. G., and McDermott A. E. Photosystem I charge separation in the absence of center A and B. III. Biochemical characterization of a reaction center particle containing P-700 and FX. Biochim. Biophys. Acta - Bioenerg., 893 (2), 149–160 (1987). doi: 10.1016/0005-2728(87)90034-X
  62. Parrett K. G., Mehari T., Warren P. G., and Golbeck J. H. Purification and properties of the intact P-700 and Fx-containing Photosystem I core protein. Biochim. Biophys. Acta, 973 (2), 324–32 (1989). doi: 10.1016/S0005-2728(89)80439-6
  63. Brettel K. and Leibl W. Electron transfer in photosystem I. Biochim. Biophys. Acta - Bioenerg., 1507 (1–3), 100–114 (2001). doi: 10.1016/S0005-2728(01)00202-X
  64. Vassiliev I. R., Jung Y. S., Mamedov M. D., Semenov A. Yu., and Golbeck J. H. Near-IR absorbance changes and electrogenic reactions in the microsecondto-second time domain in Photosystem I. Biophys. J., 72 (1), 301–315 (1997). doi: 10.1016/S00063495(97)78669-7
  65. Sun J., Hao S., Radle M., Xu W., Shelaev I., Nadtochenko V., Shuvalov V., Semenov A., Gordon H., van der Est A., and Golbeck J. H. Evidence that histidine forms a coordination bond to the A0A and A0B chlorophylls and a second H-bond to the A1A and A1B phylloquinones in M688HPsaA and M668HPsaB variants of Synechocystis sp. PCC 6803. Biochim. Biophys. Acta Bioenerg., 1837 (8), 1362–1375 (2014). doi: 10.1016/j.bbabio.2014.04.004
  66. Agalarov R. and Brettel K. Temperature dependence of biphasic forward electron transfer from the phylloquinone(s) A1 in photosystem I: Only the slower phase is activated. Biochim. Biophys. Acta - Bioenerg., 1604 (1), 7–12 (2003). doi: 10.1016/S0005-2728(03)00024-0
  67. Jordan R., Nessau U., and Schlodder E. Charge Recombination Between the Reduced Iron-Sulphur Clusters and P700+. In Photosynthesis: Mechanisms and Effects (Proc. XIth Int. Congr. Photosynth.), Ed. by G. Garab (Springer, Dordrecht, 1998), vol. I, pp. 663–666. doi: 10.1007/978-94-011-3953-3_157
  68. Ptushenko V. V., Cherepanov D. A., Krishtalik L. I., and Semenov A. Y. Semi-continuum electrostatic calculations of redox potentials in photosystem I. Photosynth. Res., 97 (1), 55–74 (2008). doi: 10.1007/s11120008-9309-y
  69. Cherepanov D. A., Milanovsky G. E., NadtochenkoV. A., and Semenov A. Y. Energy barrier of photoinduced charge separation in the reaction centers of photosystems I and II. Russ. J. Phys. Chem. B, 17 (3), 594–599 (2023).
  70. Ishikita H. and Knapp E.-W. Redox potential of quinones in both electron transfer branches of photosystem I. J. Biol. Chem., 278 (52), 52002–11 (2003). doi: 10.1074/jbc.M306434200
  71. Kawashima K. and Ishikita H. Structural Factors That Alter the Redox Potential of Quinones in Cyanobacterial and Plant Photosystem I. Biochemistry, 56 (24), 3019–3028 (2017). doi: 10.1021/acs.biochem.7b00082
  72. Shinkarev V. Functional modeling of electron transfer in photosynthetic reaction centers. In Photosystem I. The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase (Advances in Photosynthesis and Respiration, vol. 24), Ed. by J. H. Golbeck, (Springer, Dordrecht, 2006). doi: 10.1007/978-1-4020-4256-0_36
  73. Kleinherenbrink F. A. M., Hastings G., Blankenship R. E., and Wittmershaus B. P. Delayed fluorescence from FeS type photosynthetic reaction centers at low redox potential. Biochemistry, 33 (10), 3096–3105 (1994). doi: 10.1021/bi00176a044
  74. Molotokaite E., Remelli W., Casazza A. P., Zucchelli G., Polli D., Cerullo G., and Santabarbara S. Trapping dynamics in photosystem I-light harvesting complex i of higher plants is governed by the competition between excited state diffusion from low energy states and photochemical charge separation. J. Phys. Chem. B, 121 (42), 9816–9830 (2017). doi: 10.1021/acs.jpcb.7b07064
  75. Giera W., Ramesh V. M., Webber A. N., van Stokkum I., van Grondelle R., and Gibasiewicz K. Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. Biochim. Biophys. Acta - Bioenerg., 1797 (1), 106–112 (2010). doi: 10.1016/j.bbabio.2009.09.006
  76. Holzwarth A. R., Muller M. G., Niklas J., and LubitzW. Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii. J. Phys. Chem. B, 109 (12), 5903–5911 (2005). doi: 10.1021/jp046299f
  77. Cherepanov D. A., Shelaev I. V., Gostev F. E., Aybush A. V., Mamedov M. D., Shen G., NadtochenkoV. A., Bryant D. A., Semenov A. Y., and Golbeck J. H. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Biochim. Biophys. Acta – Bioenerg., 1861 (5–6), 148184 (2020). doi: 10.1016/j.bbabio.2020.148184
  78. Cherepanov D. A., Semenov A. Y., Mamedov M. D., Aybush A. V., Gostev F. E., Shelaev I. V., Shuvalov V. A., and Nadtochenko V. A. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys. Rev., 14 (4), 805–820 (2022). doi: 10.1007/s12551-022-00983-1
  79. Wasielewski M. R., Smith R. L., and Kostka A. G. Electrochemical production of chlorophyll a and pheophytin a excited states. J. Am. Chem. Soc., 102 (23), 358 (1981). doi: 10.1021/JA00543A004/ASSET/JA00543A004.FP.PNG_V03
  80. Kobayashi M., Ohashi S., Iwamoto K., Shiraiwa Y., Kato Y., and Watanabe T. Redox potential of chlorophyll d in vitro. Biochim. Biophys. Acta - Bioenerg., 1767 (6), 596–602 (2007). doi: 10.1016/j.bbabio.2007.02.015
  81. Gorka M., Charles P., Kalendra V., Baldansuren A., Lakshmi K. V., and Golbeck J. H. A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience, 24 (7), 102719 (2021). doi: 10.1016/j.isci.2021.102719
  82. Gorka M., Baldansuren A., Malnati A., Gruszecki E., Golbeck J. H., and Lakshmi K. V. Shedding light on primary donors in photosynthetic reaction centers. Front. Microbiol., 12 2776 (2021). doi: 10.3389/fmicb.2021.735666

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies