Assessment of Antenna Heterogeneity and Activity of the Oxygen-Evolving Complex of Photosystem II Using Mathematical Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Photosystem II is one of the main pigment-protein complexes of photosynthesis, which is highly sensitive to unfavorable environmental factors. Heterogeneity of properties in photosystem II is a key factor for the resistance of autotrophic organisms to stress factors. Assessment of the photosystem II heterogeneity can be used in environmental monitoring for rapid detection of environmental pollution. The paper presents an integrated approach for assessing the heterogeneity of photosystem II, based on a mathematical analysis of the shape of the chlorophyll a fluorescence induction curve of samples treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea using a mathematical model and the parameters from the JIP-test. Fluorescence induction curves obtained for treated samples from Chlorella, Scenedesmus, Ankistrodesmus, Pleurochloris, and Stichococcus cell cultures grown under 8 and 16 W·m–2 of light intensities were analyzed. For all cases, the relationship between reaction centers and different antenna sizes (alpha and beta centers) was assessed, and the part of active and inactive oxygen-releasing complexes was determined.

About the authors

N. S Degtereva

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

T. Yu Plyusnina

Department of Biology, M.V. Lomonosov Moscow State University

Email: plusn@yandex.ru
Moscow, Russia

S. S Khrushchev

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

R. N Chervitsov

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

E. N Voronova

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

O. V Yakovleva

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

T. K Antal

Pskov State University

Laboratory of Integrated Environmental Research Pskov, Russia

G. Yu Riznichenko

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

A. B Rubin

Department of Biology, M.V. Lomonosov Moscow State University

Moscow, Russia

References

  1. Terentyev V. V., Shukshina A. K., Ashikhmin A. A., Tikhonov K. G., and Shitov A. V. The main structural and functional characteristics of photosystem-II-enriched membranes isolated from wild type and cia3 mutant Chlamydomonas reinhardtii. Life, 10 (5), 63 (2020). doi: 10.3390/life10050063
  2. Terentyev V. V., Shukshina A. K., and Shitov A. V. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. Biochim. Biophys. Acta–Bioenergetics, 1860, 582–590 (2019). doi: 10.1016/j.bbabio.2019.06.003
  3. Melis A. and Homann P. H. Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poisoned chloroplasts. Photochem. Photobiol., 21, 431–437 (1975). doi: 10.1111/j.17511097.1975.tb06701.x
  4. Melis A. and Homann P. H. Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem. Photobiol., 23 (5), 343–350 (1976). doi: 10.1111/j.1751-1097.1976.tb07259.x
  5. Malkin S. and Kok B. Fluorescence induction studies in isolated chloroplasts. I-Number of components involved in the reaction and quantum yields. Biochim. Biophys. Acta, 126 (3), 413–432 (1966). doi: 10.1016/0926-6585(66)90001-x
  6. Murata N., Nishimura M., and Takamiya A. Fluorescence of chlorophyll in photosynthetic systems. II. Induction of fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta, 120 (1), 23–33 (1966). doi: 10.1016/0926-6585(66)90273-1
  7. Hsu B.D., Lee Y.S., and Jang Y.R. A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. Biochim. Biophys. Acta, 975 (1), 44–49 (1989). doi: 10.1016/S0005-2728(89)80199-9
  8. Hsu B.D. and Lee J.Y. A study on the fluorescence induction curve of the DCMU-poisoned chloroplast. Biochim. Biophys. Acta, 1056 (3), 285–292 (1991). doi: 10.1016/S0005-2728(05)80060-X
  9. Umena Y., Kawakami K., Shen J. R., and Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature, 473 (7345), 55–60 (2011). doi: 10.1038/nature09913
  10. Van Bezouwen L. S., Caffarri S., Kale R. S., Kouřil R., Thunnissen A.-M. W. H., Oostergetel G. T., and Boekema E. J. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants, 3 (7), 17080 (2017). doi: 10.1038/nplants.2017.80
  11. Hsu B. D. and Lee J. Y. The photosystem II heterogeneity of chlorophyll b-deficient mutants of rice: a fluorescence induction study. Aust. J. Plant Physiol., 22 (2), 195–200 (1995). doi: 10.1071/PP9950195
  12. Mathur S., Allakhverdiev S. I., and Jajoo A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat (Triticum aestivum). Biochim. Biophys. Acta, 1807 (1), 22–29 (2011). doi: 10.1016/j.bbabio.2010.09.001
  13. Anderson J. M. and Melis A. Localization of different photosystems in separate regions of chloroplast membranes. Proc. Natl. Acad. Sci. USA, 80 (3), 745–749 (1983). doi: 10.1073/pnas.80.3.745
  14. Joliot A. and Joliot P. Etude cinetique de la reaction photochimique liberant l'oxygene au cours de la photosynthese. C. R. Acad. Sci. Paris, 258, 4622–4625 (1964).
  15. Sipka G., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J. R., Lambrev P. H., and Garab G. Light-adapted chargeseparated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell, 33, 1286–1302 (2021). doi: 10.1093/plcell/koab008
  16. Melis A. Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta, 1058 (2), 87–106 (1991). doi: 10.1016/S0005-2728(05)80225-7
  17. Pan X. L., Deng C. N., Zhang D. Y., Wang J. L., Mu G. J., and Chen Y. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp characterized by a variety of in vivo chlorophyll fluorescence tests. Aquat. Toxicol., 89 (4), 207–213 (2008). doi: 10.1016/j.aquatox.2008.06.018
  18. Singh-Tomar R., Mathur S., Allakhverdiev S. I., and Jajoo A. Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J. Bioenerg. Biomembr., 44 (4), 411–419 (2012). doi: 10.1007/s10863-012-9444-1
  19. Dao L. H. T. and Beardall J. Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. Algal Res., 16, 150–159 (2016). doi: 10.1016/j.algal.2016.03.006
  20. Markou G., Dao L. H. T., Muylaert K., and Beardall J. Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Res., 26, 84–92 (2017). doi: 10.1016/j.algal.2017.07.005
  21. Antal T., Mattila H., Hakala-Yatkin M., Tyystjarvi T., and Tyystjarvi E. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris. Planta, 232 (4), 887–898 (2010). doi: 10.1007/s00425-010-1227-5
  22. McCauley S. W. and Melis A. Quantitation of photosystem II in spinach chloroplasts. Biochim. Biophys. Acta −Bioenergetics, 849 (2), 175–182 (1986). doi: 10.1016/0005-2728(86)90023-x
  23. Malkin S., Armond P. A., Mooney H. A., and Fork D. C. Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity. Plant Physiol., 67 (3), 570–579 (1981). doi: 10.1104/pp.67.3.570
  24. Henrysson T. and Sundby C. Characterization of photosystem II in stroma thylakoid membranes. Photosynth. Res., 25 (2), 107–117 (1990). doi: 10.1007/bf00035459
  25. Wang, R. T. and Myers, J. Energy transfer between photosynthetic units analyzed by flash oxygen yield vs. flash intensity. Photochem. Photobiol., 17 (5), 321–332 (1973). doi: 10.1111/J.1751-1097.1973.Tb06360.X
  26. Nedbal L., Gibas C., and Whitmarsh J. Light saturation curves show competence of the water splitting complex in inactive Photosystem II reaction centers. Photosynth. Res., 30 (2–3), 85–94 (1991). doi: 10.1007/bf00042006
  27. Lazar D., Tomek P., Ilik P., and Nauš J. Determination of the antenna heterogeneity of Photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosynth. Res., 68 (3), 247–257 (2001). doi: 10.1023/A:1012973402023
  28. Kalaji H. M., Schansker G., Brestic M., Bussotti F., Calatayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Li P., Losciale P., Mishra V. K., Misra A. N., Nebauer S. G., Pancaldi S., Penella C., Pollastrini M., Suresh K., Tambussi E., Yanniccari M., Zivcak M., Cetner M. D., Samborska I. A., Stirbet A., Olsovska K., Kunderlikova K., Shelonzek H., Rusinowski S., and Baba W. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res., 132 (1), 1366 (2016). doi: 10.1007/s11120-016-0318-y
  29. de Marchin T., Ghysels B., Nicolay S., and Franck F. Analysis of PSII antenna size heterogeneity of Chlamydomonas reinhardtii during state transitions. Biochim. Biophys. Acta, 1837 (1), 121–130 (2014). doi: 10.1016/j.bbabio.2013.07.009
  30. Plyusnina T. Yu., Khruschev S. S., Degtereva N. S., Voronova E. N. Volgusheva A. A., Riznichenko G. Yu., and Rubin A. B. Three-state mathematical model for the assessment of DCMU-treated photosystem II heterogeneity. Photosynth. Res., 159, 303–320 (2024) doi: 10.1007/s11120-024-01077-7
  31. Погосян С. И., Гальчук С. В., Казимирко Ю. В., Конюхов И. В. и Рубин А. Б. Применение флуориметра ≪МЕГА-25≫ для определения количества фитопланктона и оценки состояния его фотосинтетического аппарата. Вода: химия и экология, 6, 34–40 (2009).
  32. Плюснина Т. Ю., Хрущев С. С., Ризниченко Г. Ю. и Рубин А. Б. Анализ кинетики индукции флуоресценции хлорофилла c помощью спектральной мультиэкcпоненциальной аппроксимации. Биофизика, 60 (3), 487-495 (2015).
  33. Plyusnina T. Yu., Khruschev S. S., Degtereva N. S., Konyukhov I. V., Solovchenko A. E., Kouzmanova M., Goltsev V. N., Riznichenko G. Yu., and Rubin A. B. Gradual changes in the photosynthetic apparatus triggered by nitrogen depletion during microalgae cultivation in photobioreactor. Photosynthetica, 58 (SI), 443–451 (2020). doi: 10.32615/ps.2020.002
  34. Тихонов А. Н. О зависимости решений дифференциальных уравнений от малого параметра. Матем. сб., 22 (64) N. 2, 193–204 (1948).
  35. Gizzatkulov N. M., Goryanin I. I., Metelkin E. A., Mogilevskaya E. A., Peskov K. V., and Demin O. V. DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results. BMC Syst. Biol., 4, 109 (2010). doi: 10.1186/1752-0509-4-109
  36. Newville M., Otten R., Nelson A., Stensitzki T., Ingargiola A., Allan D., Fox A., Carter F., Michał, Osborn R., Pustakhod D., Weigand S., lneuhaus, Aristov A., Glenn, Mark, mgunyho, Deil Ch., Hansen A. L. R., Pasquevich G., Foks L., Zobrist N., Frost O., Stuermer, Jaskula J.-Ch., Caldwell Sh., Eendebak P., Pompili M., Nielsen J. H., and Persaud A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python. Zenodo (2023) doi: 10.5281/zenodo.598352
  37. Hunter J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Engineer., 9 (3), 90–95 (2007). doi: 10.1109/MCSE.2007.55
  38. Strasser R. J., Tsimilli-Michael M., and Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, Ed. by G. C. Papageorgiou and Govindjee, 19, 321–362 (2004). doi: 10.1007/978-1-40203218-9_12
  39. Hamilton M. L., Franco E., Deak Z., Schlodder, E., Vass I., and Nixon P. J. Investigating the photoprotective role of cytochrome b-559 in Photosystem II in a Mutant with altered ligation of the haem. Plant Cell Physiol., 55 (7), 1276–1285 (2014). doi: 10.1093/pcp/pcu070

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies