The Involvement of Carbonic Anhydrases in Chloroplasts of C3 Higher Plants in Adaptation Changes of Photosynthetic Reactions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present research shows that changes in vegetation conditions have implications both for the expression levels of genes encoding chloroplast carbonic anhydrases and the carbonic anhydrase activity of chloroplast compartments. The results of experiments with mutants of the genes of the chloroplast carbonic anhydrases indicate that the activity of the chloroplast carbonic anhydrases determines the nature of changes in photosynthesis reactions in response to changes in environmental conditions. Possible mechanisms are proposed for participation of carbonic anhydrase in light-dependent processes in the chloroplast. Based on these findings, a hypothesis that carbonic anhydrases in chloroplasts function interdependently is developed.

About the authors

B. N Ivanov

Institute of Basic Biological Problems, Russian Academy of Sciences

Email: ivboni@rambler.ru
Pushchino, Russia

N. N Rudenko

Institute of Basic Biological Problems, Russian Academy of Sciences

Pushchino, Russia

References

  1. Hewett-Emmett D. and Tashian R. E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol. Phylogenet. Evol., 5 (1), 50–77 (1996). doi: 10.1006/mpev.1996.0006
  2. DiMario R. J., Machingura M. C., Waldrop G. L., and Moroney J. V. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci., 268, 11–17 (2018). doi: 10.1016/j.plantsci.2017.12.002
  3. Sawaya M. R., Cannon G. C., Heinhorst S., Tanaka Sh., Williams E. B., Yeates T. O., and Kerfeld Ch. A. The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J. Biol. Chem., 281 (11), 7546–7555 (2006). DOI: org/10.1074/jbc.M510464200
  4. Supuran C. T. Structure and function of carbonic anhydrases. Biochem. J., 473 (14), 2023–2032 (2016). doi: 10.1042/BCJ20160115
  5. Hirakawa Y., Senda M., Fukuda K., Yu H. Y., Ishida M., Taira M., Kinbara K., and Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol., 19 (1), 105 (2021). DOI: org/10.1186/s12915-021-01039-8
  6. Rowlett R. S. Structure and catalytic mechanism of βcarbonic anhydrases. In Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications, Ed. by S. Frost and R. McKenna (Series “Subcellular Biochemistry”, vol. 75) (Springer, Dordrecht, 2014), pp. 53–76. doi: 10.1007/978-94-007-7359-2_4
  7. Kasili R. W., Rai A. K., and Moroney J. V. LCIB functions as a carbonic anhydrase: evidence from yeast and Arabidopsis carbonic anhydrase knockout mutants. Photosynth. Res., 156 (2), 193–204 (2023). doi: 10.1007/s11120-023-01005-1
  8. Kikutani S., Nakajima K., Nagasato C., Tsuji Y., Miyatake A., and Matsuda Y. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA, 113 (35), 9828–9833 (2016). doi: 10.1073/pnas.1603112113
  9. Руденко Н. Н. и Иванов Б. Н. Нерешенные проблемы функционирования карбоангидраз в фотосинтезирующих клетках высших C3 растений. Биохимия, 86 (10), 1464–1478 (2021). doi: 10.1134/S0006297921100072
  10. Shen J., Li Z., Fu Y., and Liang J. Identification and molecular characterization of the alternative spliced variants of beta carbonic anhydrase 1 (βCA1) from Arabidopsis thaliana. Peer J., 9, e12673 (2021). doi: 10.7717/peerj.12673
  11. Fedorchuk T., Rudenko N., Ignatova L., and Ivanov B. The presence of soluble carbonic anhydrase in the thylakoid lumen of chloroplasts from Arabidopsis leaves. J. Plant Physiol., 171 (11), 903–906 (2014). doi: 10.1016/j.jplph.2014.02.009
  12. Rudenko N. N., Ignatova L. K., and Ivanov B. N. Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms. Photosynth. Res., 91 (1), 81–89 (2007). doi: 10.1007/s11120-007-9148-2
  13. Ignatova L., Zhurikova E., and Ivanov B. The presence of the low molecular mass carbonic anhydrase in photosystem II of C3 higher plants. J. Plant Physiol., 232, 94–99 (2019). doi: 10.1016/j.jplph.2018.11.017
  14. Fedorchuk T. P., Kireeva I. A., Opanasenko V. K., Terentyev V. V., Rudenko N. N., Borisova-MubarakshinaM. M., and Ivanov B. N. Alpha carbonic anhydrase 5 mediates stimulation of ATP synthesis by bicarbonate in isolated arabidopsis thylakoids. Front. Plant Sci., 12, 662082 (2021). doi: 10.3389/fpls.2021.662082
  15. Nadeeva E. M., Ignatova L. K., Rudenko N. N., Vetoshkina D. V., Naydov I. A., Kozuleva M. A., and Ivanov B. N. Features of photosynthesis in Arabidopsis thaliana plants with knocked out gene of alpha carbonic anhydrase 2. Plants, 12 (9), 1763 (2023). DOI: org/10.3390/plants12091763
  16. Rudenko N. N., Borisova-Mubarakshina M. M., Ignatova L. K., Fedorchuk T. P., Nadeeva-Zhurikova E. M., and Ivanov B. N. Role of plant carbonic anhydrases under stress conditions. In Plant Stress Physiol., Ed. by A. Hossain (InTech, London), pp. 301–325. doi: 10.5772/intechopen.91971
  17. Polishchuk O. V. Stress-related changes in the expression and activity of plant carbonic anhydrases. Planta, 253 (2), 58 (2021). doi: 10.1007/s00425-020-03553-5
  18. Руденко Н. Н., Ветошкина Д. В., Федорчук Т. П. и Иванов Б. Н. Влияние освещенности растений при разном фотопериоде на уровень экспрессии генов карбоангидраз α-и β-семейств в листьях Arabidopsis thaliana. Биохимия, 82 (9), 1318–1329 (2017). doi: 10.1134/S000629791709005X
  19. Weigel D. and Glazebrook J. Arabidopsis: A Laboratory Manual (CSHL Press, NY, 2002).
  20. Demmig-Adams B. and Adams W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Biol. Plant Mol. Biol., 43, 599–626 (1992). doi: 18.1146/annurev.pp.43.060192.003123
  21. Bailey S., Walters R. G., Jansson S., and Horton P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta, 213 (5), 794–801 (2001). doi: 10.1007/s004250100556
  22. Ruban A. V. Non-photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants against photodamage. Plant Physiol., 170, 1903–1916 (2016).
  23. Rudenko N. N., Ignatova L. K., Naydov I. A., Novichkova N. S., and Ivanov B. N. Effect of CO2 content in air on the activity of carbonic anhydrases in cytoplasm, chloroplasts, and mitochondria and the expression level of carbonic anhydrase genes of the α- and β-families in Arabidopsis thaliana leaves. Plants, 11 (16), 2113 (2022). DOI: org/10.3390/ plants11162113
  24. Rudenko N. N., Fedorchuk T. P., Vetoshkina D. V., Zhurikova E. M., Ignatova L. K., and Ivanov B. N. Influence of knockout of At4g20990 gene encoding αCA4 on photosystem II light-harvesting antenna in plants grown under different light intensities and day lengths. Protoplasma, 255, 69–78 (2018). doi: 10.1007/s00709-017-1133-9
  25. Rudenko N. N., Fedorchuk T. P., Terentyev V. V., Dymova O. V., Naydov I. A., Golovko T. K., BorisovaMubarakshina M. M., and Ivanov B. N. The role of carbonic anhydrase α-CA4 in the adaptive reactions of photosynthetic apparatus: the study with α-CA4 knockout plants. Protoplasma, 257, 489–499 (2020). doi: 10.1007/s00709-019-01456-1
  26. Журикова Е. М., Игнатова Л. К., Руденко Н. Н., Мудрик В. А., Ветошкина Д. В. и Иванов Б. Н. Участие двух карбоангидраз альфа семейства в фотосинтетических реакциях Arabidopsis thaliana. Биохимия, 81, 1463–1470 (2016).
  27. Sundby C., McCaffery S., and Anderson J. M. Turnover of the photosystem II D1 protein in higher plants under photoinhibitory and nonphotoinhibitory irradiance. J. Biol. Chem., 268 (34), 25476–25482 (1993).
  28. Rochaix J.-D., Lemeille S., Shapiguzov A., Samol I., Fucile G., Willig A., and Goldschmidt-Clermont M. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos. Trans. R Soc. Lond. B. Biol. Sci., 367 (1608), 3466–3474 (2012). doi: 10.1098/rstb.2012.0064
  29. Allen J. F. State transitions – a question of balance. Science, 299 (5612), 1530–1532 (2003). doi: 10.1126/science.1082833
  30. Rudenko N. N., Permyakova N. V., Ignatova L. K., Nadeeva E. M., Zagorskaya A. A., Deineko E. V., and Ivanov B. N. The role of carbonic anhydrase αCA4 in photosynthetic reactions in Arabidopsis thaliana studied, using the Cas9 and T-DNA induced mutations in its gene. Plants, 11 (23), 3303 (2022). DOI: org/10.3390/plants11233303
  31. Stemler A. J. The case for chloroplast thylakoid carbonic anhydrase. Physiol. Plant., 99 (2), 348–353 (1997). doi: 10.1034/j.1399-3054.1997.990220.x
  32. Pieterse C. M. J., Van Der Does D., Zamioudis C., LeonReyes A., and Van Wees S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol., 28, 489–521 (2012). doi: 10.1146/annurev-cellbio092910-154055
  33. Wang C. and Shikanai T. Modification of activity of the thylakoid H+/K+ antiporter KEA3 disturbs ΔpH-dependent regulation of photosynthesis. Plant Physiol., 181 (2), 762–773 (2019). doi: 10.1104/pp.19.00766
  34. Sterling D., Alvarez B. V., and Casey J. R. The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl-/HCO3- exchanger binds carbonic anhydrase IV. J. Biol. Chem., 277 (28), 25239-46 (2002). doi: 10.1074/jbc.M202562200
  35. Игнатова Л. К., Руденко Н.Н., Христин М.С. и Иванов Б.Н. Гетерогенная природа карбоангидразной активности тилакоидных мембран. Биохимия, 71 (5), 651–659 (2006).
  36. Ignatova L. K., Rudenko N. N., Mudrik V. A., Fedorchuk T. P., and Ivanov B. N. Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSI. Photosynth. Res., 110, 89–98 (2011). doi: 10.1007/s11120-0119699-0
  37. Punnett T. and Iyer R. V. The enhancement of photophosphorylation and the hill reaction by carbon dioxide. J. Biol. Chem., 239, 2335–2339 (1964).
  38. Cohen W. S. and Jagendorf A. T. Inhibition of energylinked reactions in chloroplasts by polygalacturonate. Arch. Biochem. Biophys., 150 (1), 235–243 (1972). doi: 10.1016/0003-9861(72)90031-8
  39. Федорчук Т. П., Опанасенко В. К., Руденко Н. Н. и Иванов Б. Н. Исследование стимуляции фотофосфорилирования бикарбонатом в изолированных тилакоидах: эффекты ингибиторов карбоангидраз. Биол. мембраны, 35 (1), 34–41 (2018).
  40. Missner A., Kugler P., Saparov S. M. Sommer K., Mathai J. C., Zeidel M. L., and Pohl P. Carbon dioxide transport through membranes. J. Biol. Chem., 283 (37), 25340–25347 (2008). doi: 10.1074/jbc.M800096200
  41. Schuldiner S., Rottenberg H., and Avron M. Membrane potential as a driving force for ATP synthesis in chloroplasts. FEBS Lett., 28 (2), 173–176 (1972). doi: 10.1016/0014-5793(72)80704-X
  42. Pick U., Rottenberg H., and Avron M. The dependence of photophosphorylation in chloroplasts on delta pH and external pH. FEBS Lett., 48 (1), 32–36 (1974). doi: 10.1016/0014-5793(74)81055-0
  43. Tikhonov A. N. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res., 116 (2-3), 511–534 (2013). doi: 10.1007/s11120-013-9845-y
  44. Руденко Н., Игнатова Л., Федорчук Т., Надеева Е., Козулёва М., Вильянен Д. и Иванов Б. Участие хлоропластных карбоангидраз в регуляции функциональной активности фотосинтетического аппарата. В сб. От первичных процессов фотосинтеза до альтернативной энергетики (Пущино, 2022), с. 48.
  45. Price G. D., von Caemmerer S., Evans J. R., Yu J.-W., Lloyd J., Oja V., Kell P., Harrison K., Gallagher A., and Badger M. R. Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 193, 331–340 (1994). DOI: org/10.1007/BF00201810.
  46. Weerasooriya H. N., DiMario R. J., Rosati V. C., Rai A. K., LaPlace L. M., Filloon V. D., Longstreth D. J., and Moroney J. V. Arabidopsis plastid carbonic anhydrase βCA5 is important for normal plant growth. Plant Physiol., 190 (4), 2173–2186 (2022). doi: 10.1093/plphys/kiac451
  47. Sharma N., Froehlich J. E., Rillema R., Raba D. A., Chambers T., Kerfeld C. A., Kramer D. M., Walker B., and Brandizzi F. Arabidopsis stromal carbonic anhydrases exhibit non-overlapping roles in photosynthetic efficiency and development. Plant J., 15 (2), 386–397 (2023). doi: 10.1111/tpj.16231
  48. Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., Godoski A. J., Kuhn J. M., and Schroeder J. I. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol., 12 (1), 87–93 (2010). doi: 10.1038/ncb2009
  49. DiMario R. J., Quebedeaux J. C., Longstreth D. J., Dassanayake M., Hartman M. M., and Moroney J. V. The cytoplasmic carbonic anhydrases βCA2 and βCA4 are required for optimal plant growth at low CO2. Plant Physiol., 171 (1), 280–293 (2016). doi: 10.1104/pp.15.01990
  50. Hines K. M., Chaudhari V., Edgeworth K. N., OwensT. G., and Hanson M. R. Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proc. Natl. Acad. Sci. USA, 118 (33), e2107425118 (2021). doi: 10.1073/pnas.2107425118
  51. Perales M., Parisi G., Fornasari M. S., Colaneri A., Villarreal F., Gonzalez-Schain N., Echave J., GomezCasati D., Braun H. P., Araya A., and Zabaleta E. Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Mol. Biol., 56 (6), 947–957 (2004). doi: 10.1007/s11103-004-6324-z
  52. Soto D., Cordoba J. P., Villarreal F., Bartoli C., Schmitz J., Maurino V. G., Braun H. P., Pagnussat G. C., and Zabaleta E. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana. Plant J., 83 (5), 831–844 (2015). doi: 10.1111/tpj.12930

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies