CRISPR/Cas System Photocontrolled at the Guide RNA Level

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Improving the efficiency and precision of gene editing systems is of utmost importance for modern molecular biology and genetic engineering. Of particular interest is the design of controlled CRISPR/Cas9 systems, the activity of which could be regulated using different physico-chemical stimuli such as light irradiation, pH change, temperature, change of molecule concentration and so forth. A promising direction in this area is the development of approaches to control activity at the level of guide RNA through photosensitive modifications to the structure and sequence of guide RNA, and additional oligonucleotides. This review is devoted to the analysis of publications on design of photosensitive guide RNAs and their applications in genome editing systems using CRISPR.

About the authors

L. V Sakovina

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

E. S Gorlenko

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

D. S Novopashina

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: danov@niboch.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia

References

  1. Tang X. and Dmochowski I. J. Controlling RNA digestion by RNase H with a light-activated DNA hairpin. Angew. Chemie. Int. Ed., 45 (21), 3523–3526 (2006). doi: 10.1002/anie.200600954
  2. Matsushita-Ishiodori Y. and Ohtsuki T. Photoinduced RNA interference. Acc. Chem. Res., 45 (7), 1039–1047 (2012). doi: 10.1021/ar200227n
  3. Ахметова Е. А., Ким Д. В., Доме А. С., Мещанинова М. И. и Новопашина Д. С. Новый подход к синтезу фотоблокированных малых интерферирующих РНК для активируемой светом РНК-интерференции. Биоорг. химия, 48 (5), 580–588 (2022). doi: 10.31857/S0132342322050037
  4. Shen Y., Li Z., Wang G., and Ma N. Photocaged nanoparticle sensor for sensitive microRNA imaging in living cancer cells with temporal control. ACS Sensors, 3 (2), 494–503 (2018). doi: 10.1021/acssensors. 7b00922
  5. Griepenburg J. C., Ruble B. K., and Dmochowski I. J. Caged oligonucleotides for bidirectional photomodulation of let-7 miRNA in zebrafish embryos. Bioorg. Med. Chem., 21 (20), 6198–6204 (2013). doi: 10.1016/j.bmc.2013.04.082
  6. Jain P. K., Ramanan V., Schepers A. G., Dalvie N. S., Panda A., Fleming H. E., and Bhatia S. N. Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew. Chemie Int. Ed., 55 (40), 12440–12444 (2016). doi: 10.1002/anie.201606123
  7. Nunez J. K., Harrington L. B., and Doudna J. A. Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem. Biol., 11 (3), 681–688 (2016). doi: 10.1021/acschembio.5b01019
  8. O'Hagan M. P., Duan Z., Huang F., Laps S., Dong J., Xia F., and Willner I. Photocleavable ortho-nitrobenzylprotected DNA architectures and their applications. Chem. Rev., 123 (10), 6839–6887 (2023). doi: 10.1021/acs.chemrev.3c00016
  9. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., and Charpentier E. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science, 337 (6096), 816–812 (2012). doi: 10.1126/science.1225829
  10. Wang J. Y., Pausch P., and Doudna J. A. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat. Rev. Microbiol., 20 (11), 641–656 (2022). doi: 10.1038/s41579-022-00739-4
  11. Makarova K. S., Wolf Y. I., Iranzo J., Shmakov S. A., Alkhnbashi O. S., Brouns S. J. J., Charpentier E., Cheng D., Haft D. H., Horvath P., Moineau S., Mojica F. J. M., Scott D., Shah S. A., Siksnys V., TernsM. P., Venclovas C., White M. F., Yakunin A. F., Yan W., Zhang F., Garrett R. A., Backofen R., van der Oost J., Barrangou R., and Koonin E.V. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol., 18 (2), 67–83 (2020). doi: 10.1038/s41579-019-0299-x
  12. Brown W., Zhou W., and Deiters A. Regulating CRISPR/Cas9 function through conditional guide RNA control. ChemBioChem, 22 (1), 63–72 (2021). doi: 10.1002/cbic.202000423
  13. Galizi R. and Jaramillo A. Engineering CRISPR guide RNA riboswitches for in vivo applications. Curr. Opin. Biotechnol., 55, 103–113 (2019). doi: 10.1016/j.copbio. 2018.08.007
  14. Zhuo C., Zhang J., Lee J.-H., Jiao J., Cheng D., Liu L., Kim H.-W., Tao Y., and Li M. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal. Transduct. Target Ther., 6 (1), 238 (2021). doi: 10.1038/s41392-021-00645-w
  15. Chen Y., Xu X., Wang J., Zhang Y., Zeng W., Liu Y., and Zhang X. Photoactivatable CRISPR/Cas12a strategy for one-pot DETECTR molecular diagnosis. Anal. Chem., 94 (27), 9724–9731 (2022). doi: 10.1021/acs.analchem.2c01193
  16. Nihongaki Y., Yamamoto S., Kawano F., Suzuki H., and Sato M. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol., 22 (2), 169–174 (2015). doi: 10.1016/j.chembiol.2014.12.011
  17. Manna D., Maji B., Gangopadhyay S. A., Cox K. J., Zhou Q., Law B. K., Mazitschek R., and Choudhary A. A singular system with precise dosing and spatiotemporal control of CRISPR-Cas9. Angew. Chem. Int. Ed., 58 (19), 6285–6289 (2019). doi: 10.1002/anie.201900788
  18. Hemphill J., Borchardt E. K., Brown K., Asokan A., and Deiters A. Optical control of CRISPR/Cas9 gene editing. J. Am. Chem. Soc., 137 (17), 5642–5645 (2015). doi: 10.1021/ja512664v
  19. Zhou W. and Deiters A. Conditional control of CRISPR/Cas9 function. Angew. Chem. Int. Ed., 55 (18), 5394–5399 (2016). doi: 10.1002/anie.201511441
  20. Lyu Y., He S., Li J., Jiang Y., Sun H., Miao Y., and Pu K. A photolabile semiconducting polymer nanotransducer for near-infrared regulation of CRISPR/Cas9 gene editing. Angew. Chem. Int. Ed., 58 (50), 18197–18201 (2019). doi: 10.1002/anie.201909264
  21. Chen X., Chen Y., Xin H., Wan T., and Ping Y. Nearinfrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Proc. Natl. Acad. Sci. USA, 117 (5), 2395–2405 (2020). doi: 10.1073/pnas.1912220117
  22. Peng H., Le C., Wu J., Li X.-F., Zhang H., and Le X.C. A genome-editing nanomachine constructed with a clustered regularly interspaced short palindromic repeats system and activated by near-infrared illumination. ACS Nano, 14 (3), 2817–2826 (2020). doi: 10.1021/acsnano.9b05276
  23. Ахметова Е. А., Голышев В. М., Вохтанцев И. П., Мещанинова М. И., Веньяминова А. Г. и Новопашина Д. С. Фотоактивируемая система CRISPR/Cas9. Биоорг. химия, 47 (2), 276–286 (2021). doi: 10.31857/S0132342321020020
  24. Semikolenova O. A., Sakovina L., Akhmetova E., Kim D., Vokhtantsev I., Golyshev V., Vorobyeva M., Novopashin S., and Novopashina D. Photoactivatable nanoCRISPR/Cas9 system based on crRNA reversibly immobilized on carbon nanoparticles. Int. J. Mol. Sci., 22 (20), 10919 (2021). doi: 10.3390/ijms222010919.
  25. Abe K., Sugiyama H., and Endo M. Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure. Chem. Commun., 57 (45), 5594–5596 (2021). doi: 10.1039/d1cc00876e
  26. Wang Y., Wu C. Q., Zhang Q. L., Shao M., Liu Y., Wang L.-L., Wang Z.-Y., Du J., and Xu L. Switching on/off of guide RNA by photoinduced strand displacement for functional control of CRISPR/Cas9. CCS Chemistry, 6 (5), 1338–1351 (2024). doi: 10.31635/ccschem.023.202303379
  27. Hu M., Qiu Z., Bi Z., Tian T., Jiang Y., and Zhou X. Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics. Proc. Natl. Acad. Sci. USA, 119 (26), e2202034119 (2022). doi: 10.1073/pnas.2202034119
  28. Aman R., Mahas A., and Mahfouz M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth. Biol., 9 (6), 1226–1233 (2020). doi: 10.1021/acssynbio.9b00507
  29. Wang Y., Yang T., Liu G., Xie L., Guo J., and Xiong W. Application of CRISPR/Cas12a in the rapid detection of pathogens. Clin. Chim. Acta, 548, 117520 (2023). doi: 10.1016/j.cca.2023.117520
  30. Chen J. S., Ma E. B., Harrington L. B., Da Costa M., Tian X., Palefsky J. M., and Doudna J. A. CRISPRCas12a target binding unleashes indiscriminate singlestranded DNase activity. Science, 360 (6387), 436–439 (2018). doi: 10.1126/science.aar6245
  31. Zhou W., Brown W., Bardhan A., Delaney M., Ilk A. S., Rauen R. R., Kahn S. I., Tsang M., and Deiters A. Spatiotemporal control of CRISPR/Cas9 function in cells and zebrafish using light-activated guide RNA. Angew. Chemie Int. Ed., 59 (23), 8998–9003 (2020). doi: 10.1002/anie.201914575
  32. Moroz-Omori E. V., Satyapertiwi D., Ramel M.-C., Hogset H., Sunyovszki I. K., Liu Z., Wojciechowski J. P., Zhang Y., Grigsby C. L., Brito L., Bugeon L., DallmanM. J., and Stevens M. M. Photoswitchable gRNAs for spatiotemporally controlled CRISPR-Casbased genomic regulation. ACS Cent. Sci., 6 (5), 695–703 (2020). doi: 10.1021/acscentsci.9b01093
  33. Wang S., Wei L., Wang J.-Q., Ji H., Xiong W., Liu J., Yin P., Tian T., and Zhou X. Light-driven activation of RNA-guided nucleic acid cleavage. ACS Chem. Biol., 15 (6), 1455–1463 (2020). doi: 10.1021/acschembio.0c00105
  34. Zou R.S., Liu Y., Wu B., and Ha T. Cas9 deactivation with photocleavable guide RNAs. Mol. Cell., 81 (7), 1553–1565 (2021). doi: 10.1016/j.molcel.2021.02.007
  35. Zou R.S., Liu Y., and Ha T. CRISPR deactivation in mammalian cells using photocleavable guide RNAs. STAR Protoc., 2 (4), 100909 (2021). doi: 10.1016/j.xpro.2021.100909
  36. Новопашина Д. С., Ахметова Е. А., Мещанинова М. И., Вохтанцев И. П., Жарков Д. О. и Веньяминова А. Г. Модифицированная направляющая РНК, обладающая способностью инактивировать систему редактирования генома CRISPR/Cas9 и способ ее получения. Патент РФ 2765159 от 26.08.2020.
  37. Carlson-Stevermer J., Kelso R., Kadina A., Joshi S., Rossi N., Walker J., Stoner R., and Maures T. CRISPRoff enables spatio-temporal control of CRISPR editing. Nat. Commun., 11 (1), 5041 (2020). doi: 10.1038/s41467-020-18853-3
  38. Sun Y.-J., Chen W.-D., Liu J., Li J.-J., Zhang Y., Cai W.-Q., Liu L., Tang X.-J., Hou J., Wang M., and Cheng L. A conformational restriction strategy for the control of CRISPR/Cas gene editing with photoactivatable guide RNAs. Angew. Chem. Int. Ed., 62 (5), e202212413 (2023). doi: 10.1002/anie.202212413
  39. Muller P., Seyfried P., Fruhauf A., and Heckel A. Phosphodiester photo-tethers for the (multi-)cyclic conformational caging of oligonucleotides. Methods Enzymol., 624, 89–111 (2019). doi: 10.1016/bs.mie.2019.04.019
  40. Seyfried P., Eiden L., Grebenovsky N., Mayer G., and Heckel A. Photo-tethers for the (multi-)cyclic, conformational caging of long oligonucleotides. Angew. Chem. Int. Ed., 56 (1), 359–363 (2017). doi: 10.1002/anie.201610025
  41. Zhang D., Liu L., Jin S., Tota E., Li Z., Piao X., Zhang X., Fu X.-D., and Devaraj N. K. Site-specific and enzymatic cross-linking of sgRNA enables wavelengthselectable photoactivated control of CRISPR gene editing. J. Am. Chem. Soc., 144 (10), 4487–4495 (2022). doi: 10.1021/jacs.1c12166
  42. Zhang Y., Ling X., Su X., Zhang S., Wang J., Zhang P., Feng W., Zhu Y. Y., Liu T. and Tang X. Optical control of a CRISPR/Cas9 system for gene editing by using photolabile crRNA. Angew. Chemie Int. Ed., 59 (47), 20895–20899 (2020). doi: 10.1002/anie.202009890
  43. Yang J., Chen C., and Tang X. Cholesterol-modified caged siRNAs for photoregulating exogenous and endogenous gene expression. Bioconjug. Chem., 29 (4), 1010–1015 (2018). doi: 10.1021/acs.bioconjchem.8b00080
  44. Ji Y., Yang J., Wu L., Yu L., and Tang X. Photochemical regulation of gene expression using caged siRNAs with single terminal vitamin E modification. Angew. Chemie Int. Ed., 55 (6), 2152–2156 (2016). doi: 10.1002/anie.201510921
  45. Yu L., Jing N., Yang Z., Zhang L., and Tang X. Caged siRNAs with single folic acid modification of antisense RNA for photomodulation of exogenous and endogenous gene expression in cells. Org. Biomol. Chem., 16 (38), 7029–7035 (2018). doi: 10.1039/c8ob01952e
  46. Deng H., Xu H., Wang Y., Jia R., Ma X., Feng Y., and Chen H. G-quadruplex-based CRISPR photoswitch for spatiotemporal control of genomic modulation. Nucl. Acids Res., 51 (8), 4064–4077 (2023). doi: 10.1093/nar/gkad178.
  47. Filippova J., Matveeva A., Zhuravlev E., and Stepanov G. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie, 167, 49–60 (2019). doi: 10.1016/j.biochi.2019.09.003
  48. Nahar S., Sehgal P., Azhar M., Rai M., Singh A., Sivasubbu S., Chakraborty D., and Maiti S. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPRCas9 based genome editing efficiency. Chem. Commun., 54 (19), 2377–2380 (2018). doi: 10.1039/c7cc08893k

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies