On the Role of Priming in the Development of Modern Rehabilitation Technologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Research studies conducted over the last years relating to the use of priming or the precedence effect while restoring impaired functions and cognitive rehabilitation of patients in a neurological clinic are analyzed. This paper is about the wide variety of priming, including transcranial magnetic and electrical stimulation, as well as preliminary presentation of acoustic and visual stimuli. The data presented show a wide range of conditions under which specific types of priming can be successfully used in the clinic, taking into account that the number of studies is growing every year. It is thought that the activation of neuroplasticity mechanisms underlies the positive effects of priming in the treatment of various neurological and psychogenic disorders. Based on the results obtained, the present research demonstrates that visual object priming is effective through the procedure of resonance scanning, or LED photostimulation with the frequency gradually increasing in the range of main EEG rhythms.

About the authors

A. I Fedotchev

Institute of Cell Biophysics, Russian Academy of Sciences

Email: fedotchev@mail.ru
Pushchino, Russia

References

  1. Бакулин И. С., Пойдашева А. Г., Лагода Д. Ю., Супонева Н. А. и Пирадов М. А. Перспективы развития терапевтической транскраниальной магнитной стимуляции. Нервные болезни, 4, 3–10 (2021).
  2. Keller C. J., Huang Y., Herrero J. L., Fini M. E., Du V., Lado F. A., Honey Ch. J., and Mehta A. D. Induction and quantification of excitability changes in human cortical networks. J. Neurosci., 38 (23), 5384–5398 (2018). doi: 10.1523/JNEUROSCI.1088-17.2018
  3. Бакулин И. С., Пойдашева А. Г., Забирова А. Х., Супонева Н. А. и Пирадов М. А. Метапластичность и неинвазивная стимуляция мозга: поиск новых биомаркеров и направлений терапевтической нейромодуляции. Анналы клинич. эксперим. неврологии, 16 (3), 74–82 (2022). doi: 10.54101/ACEN.2022.3.9
  4. Hassanzahraee M., Zoghi M., and Jaberzadeh S. How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis. Rev. Neurosci., 29 (8), 883–899 (2018). doi: 10.1515/revneuro-2017-0111
  5. Haslacher D., Nasr K., Robinson S. E., Braun Ch., and Soekadar S. R. A set of electroencephalographic (EEG) data recorded during amplitude-modulated transcranial alternating current stimulation (AM-tACS) targeting 10-Hz steady-state visually evoked potentials (SSVEP). Data Brief, 36, 107011 (2021). doi: 10.1016/j.dib. 2021.107011
  6. Liu B., Yan X., Chen X., Wang Y. and Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J. Neural Eng. 18 (6), 066042 (2021). doi: 10.1088/1741-2552/ac3ef3
  7. Goldsworthy M. R., Vallence A. M., Yang R., Pitcher J. B., and Ridding M. C. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction. Eur. J. Neurosci., 43 (4), 572–579 (2016).
  8. Hordacre B., Goldsworthy M. R., Vallence A. M., Darvishi S., Moezzi B., Hamada M., Rothwell J. C., and Ridding M.C. Variability in neural excitability and plasticity induction in the human cortex: A brain stimulation study. Brain Stimul., 10, 588–595 (2017). doi: 10.1016/j.brs.2016.12.001
  9. Zrenner B., Zrenner C., Gordon P. C., Belardinelli P., McDermott E. J., Soekadar S. R., Fallgatter A. J., Ziemann U., and Müller-Dahlhaus F. Brain oscillationsynchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul., 13 (1), 197–220 (2020). doi: 10.1016/j.brs.2019.10.007
  10. Frase L., Mertens L., Krahl A., Bhatia K., Feige B., Heinrich S. P., Vestring S., Nissen Ch., Domschke K., Bach M., and Normann C. Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex. Transl. Psychiatry, 11 (1), 17 (2021). doi: 10.1038/s41398-020-01134-4
  11. Jannati A., Oberman L. M., Rotenberg A., and Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology, 48 (1), 191–208 (2023). doi: 10.1038/s41386-022-01453-8
  12. Zhang J. J., Bai Z., and Fong K. N. Priming intermittent theta burst stimulation for hemiparetic upper limb after stroke: A randomized controlled trial. Stroke, 53 (7), 2171–2181 (2022). doi: 10.1161/STROKEAHA.121.037870
  13. Germann M., Maffitt N. J., Poll A., Raditya M., Ting J. S. K., and Baker S. N. Pairing transcranial magnetic stimulation and loud sounds produces plastic changes in motor output. J. Neurosci., 43 (14), 2469–2481 (2023). doi: 10.1523/JNEUROSCI.0228-21.2022
  14. Germann M. and Baker S. N. Evidence for Subcortical Plasticity after Paired Stimulation from a Wearable Device. J. Neurosci. 41 (7), 1418–1428 (2021). doi: 10.1523/JNEUROSCI.1554-20.2020
  15. Liu Y., Liu S., Tang C., Tang K., Liu D., Chen M., Mao Z., and Xia X. Transcranial alternating current stimulation combined with sound stimulation improves cognitive function in patients with Alzheimer’s disease: Study protocol for a randomized controlled trial. Front. Aging Neurosci., 14, 1068175 (2023). DOI: 10.3389/ fnagi.2022.1068175
  16. Черенкова Л. В. и Соколова Л. В. Зрительный прайминг у детей с расстройствами аутистического спектра. Клиническая и специальная психология, 11 (2), 192–209 (2022). doi: 10.17759/cpse. 2022110109
  17. Sanders P. J., Thompson B., Corballis P. M., Maslin M., and Searchfield G. D. A review of plasticity induced by auditory and visual tetanic stimulation in humans. Eur. J. Neurosci., 48 (4), 2084–2097 (2018). doi: 10.1111/ejn.14080
  18. Perenboom M. J. L., van de Ruit M., Zielman R., van den Maagdenberg A. M. J. M., Ferrari M. D., Carpay J. A., and Tolner E. A. Enhanced pre-ictal cortical responsivity in migraine patients assessed by visual chirp stimulation. Cephalalgia, 40, 913–923 (2020). doi: 10.1177/0333102420912
  19. Савчук Л. В., Полевая С. А., Парин С. Б., Бондарь А. Т. и Федотчев А. И. Резонансное сканирование и анализ электроэнцефалограммы при определении зрелости корковой ритмики у младших школьников. Биофизика, 67 (2), 354–361 (2022). doi: 10.31857/S0006302922020181
  20. Fedotchev А., Parin S., and Polevaya S. Resonance Scanning as an Efficiency Enhancer for EEG-Guided Adaptive Neurostimulation Life, 13 (3), 620 (2023). doi: 10.3390/life13030620
  21. Полевая С. А., Парин С. Б. и Федотчев А. И. Сочетание ЭЭГ-управляемой адаптивной нейростимуляции с резонансным сканированием в коррекции стрессиндуцированных состояний и когнитивной реабилитации студентов университета. Бюл. эксперим. биологии и медицины, 175 (6), 710–714 (2023). doi: 10.47056/0365-9615-2023-175-6-710-714
  22. Федотчев А. И., Полевая С. А. и Парин С. Б. Эффективность ЭЭГ-управляемой адаптивной нейростимуляции увеличивается при оптимизации параметров предшествующего резонансного сканирования. Физиология человека, 49 (5), 17–24 (2023). doi: 10.31857/S0131164623600039

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies