Investigating the Physiological Role of Spectral Composition of Daily Light Exposure in the Development of Childhood Myopia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present study is an attempt to experimentally create conditions for the development of childhood myopia in laboratory animals. The measurements were taken using ultrasound technique for different age groups of the Japanese quail Coturnix japonica dom. – chicks (10, 25, and 45 days) and mature birds (65 days) in in situ conditions. To simulate the processes of myopization, sources of narrow-spectrum blue (450 ± 50 nm), red (600 ± 50 nm) and yellow (550 ± 50 nm), the most comfortable for the eye, light were used. High-frequency focused ultrasound (30–80 MHz) and the B/Z scanning mode were applied for the high-quality visualization of the fine structure of the chicks' eye in the sagittal plane. The obtained data on the eyeball size, the lens and scleral-cornea, vitreous body and the chorioretinal complex revealed the age-related changes in the animal eye development. Preliminary data on the sclera elasticity of the quail's eye are presented.

About the authors

N. N Trofimova

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: ntrofimova@mail.ru
Moscow, Russia

Y. S Petronyuk

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

E. A Khramtsova

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

V. V Sokolova

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Р.N. Lebedev Physical Institute, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

K. G Antipova

National Research Centre “Kurchatov Institute”

Moscow, Russia

T. S Gurieva

Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

E. I Mednikova

Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

References

  1. Holden B. A., Fricke T. R., Wilson D. A., Jong M., Naidoo K. S., Sankaridurg P., Wong T. Y., Naduvilath T. J., and Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology, 123 (5), 1036–1042 (2016). doi: 10.1016/j.ophtha.2016.01.006
  2. Smith E. L. 3rd and Hung L. F. Form-deprivation myopia in monkeys is a graded phenomenon. Vision Res., 40 (4), 371–381 (2000). doi: 10.1016/s0042-6989(99)00184-4
  3. Апрасюхина Н. И. Основы анатомии и физиологии детей раннего и дошкольного возраста (ПГУ, Новополоцк, 2015).
  4. Foulds W., Barathi V., and Luu D. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Invest. Ophthalmol.Vis. Sci., 54, 8004–8012 (2013). doi: 10.1167/iovs.13-12476
  5. Пигирева М. Д. и Афанасьев Г. Д. Перепеловодство (Росагропромиздат, М., 1989).
  6. Rucker F. Monochromatic and white light and the regulation of eye growth. Exp. Eye Res., 184, 172–182 (2019). doi: 10.1016/j.exer.2019.04.020
  7. Mc Brien N. A., Moghaddam H. O., New R., and Williams L. R. Experimental myopia in a diurnal mammal (Sciurus carolinensis) with no accommodative ability. J. Physiol., 469, 427–441 (1993). doi: 10.1113/jphysiol.1993.sp019821
  8. Schaeffel F. and Howland H. C. Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vision Res., 31, 717–734 (1991). doi: 10.1016/0042-6989(91)90011-S
  9. Wallman J. and Winawer J. Homeostasis of eye growth and the question of myopia. Neuron, 43, 447–468 (2004). doi: 10.1016/j.neuron.2004.08.008
  10. Ультразвуковые исследования в офтальмологии: Руководство для врачей. Под ред. В. В. Нероева и Т. Н. Киселевой («ИКАР», М., 2019).
  11. Troilo D., Smith E. L. 3rd, Nickla D. L., Ashby R., Tkatchenko A. V., Ostrin L. A., Gawne T. J., Pardue M. T., Summers J. A., Kee C., Schroedl F., Wahl S., and Jones L. IMI – Report on experimental models of emmetropization and myopia. Invest. Ophthalmol.Vis. Sci., 60, M31–M88 (2019). doi: 10.1167/iovs.18-25967
  12. Wisely C. E., Sayed J. A., Tamez H., Zelinka C., Abdel-Rahman M. H., Fischer A. J., and Cebulla C. M. The chick eye in vision research: An excellent model for the study of ocular disease. Prog. Retin. Eye Res., 61, 72–97 (2017). doi: 10.1016/j.preteyeres.2017.06.004
  13. Nickla D. Ocular diurnal rhythms and eye growth regulation: Where we are 50 years after Lauber. Exp. Eye Res., 114, 25–34 (2013). doi: 10.1016/j.exer.2012.12.013
  14. Ostrin L. A. Ocular and systemic melatonin and the influence of light exposure. Clin. Exp. Optom., 102, 99–108 (2019). doi: 10.1111/cxo.12824
  15. Mizutani M. Establishment of inbred strains of chicken and japanese quail and their potential as animal models. Exp. Anim., 51, 417–29 (2002). doi: 10.1538/expanim.51.417
  16. Coleman D., Silverman R. H., Chabi A., Rondeau M. J., Shung K., Cannata J., and Lincoff H. High-resolution ultrasonic imaging of the posterior segment. Ophthalmology, 111, 1344–1351 (2004). doi: 10.1016/j.ophtha.2003.10.029
  17. Foster F. S., Zhang M. Y., Duckett A. S., Cucevic V., and Pavlin C. J. In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy. Invest. Ophthalmol. Vis. Sci., 44, 2361–2366 (2003). doi: 10.1167/iovs.02-0911
  18. Pavlin C., Easterbrook M., Hurwitz J., Harasiewicz K., and Foster F. S. Ultrasound biomicroscopy in the assessment of anterior scleral disease. Am. J. Ophthalmol., 116, 854–857 (993). doi: 10.1016/S0002-9394(14)73207-6
  19. Nakamura Y., Kusano K., Nakamura K., Kobayashi K., Hozumi N., Saijo Y., and Ohe T. A new diagnostic feasibility for cardiomyopathy utilizing acoustic microscopy. World J. Cardiovasc. Dis., 3, 22–30 (2013). doi: 10.4236/wjcd.2013.31006
  20. Xie R., Qiu B., Chhablani J., and Zhang X. Evaluation of choroidal thickness using optical coherent tomography: A Review. Front. Med. (Lausanne), 3, 783519 (2021). doi: 10.3389/fmed.2021.783519
  21. Zakutailov K. V., Levin V. M., and Petronyuk Y. S. High-resolution ultrasonic ultrasound methods: Microstructure visualization and diagnostics of elastic properties of modern materials (Review). Inorg. Mater. 46, 1655–1661 (2010). doi: 10.1134/S0020168510150100
  22. Петронюк Ю. С., Храмцова Е. А., Левин В. М., Бонарцев А. П., Воинова В. В., Бонарцева Г. А., Мураев А. А., Асфаров Т. Ф. и Гусейнов Н. А. Развитие методов акустической микроскопии для наблюдения процессов остеогенеза в регенеративной медицине. Изв. РАН. Сер. физ., 84 (6), 799–802 (2020). doi: 10.31857/S0367676520060204
  23. Петронюк Ю. С., Трофимова Н. Н., Зак П. П., Храмцова Е. А., Андрюхина О. М., Андрюхина А. С., Рябцева А. А., Гурьева Т. С., Медникова Е. И., Титов С. А. и Левин В. М. Исследование глазных патологий на биомодели японского перепела Coturnix japonica. Хим. физика, 41 (2), 27–33 (2022). doi: 10.31857/S0207401X22020078
  24. Хилл К., Тер Хаар Г. и Бэмбер Дж. Ультразвук в медицине. Под ред. О. А. Сапожникова и др. (Физматлит., М., 2008).
  25. Трофимова Н. Н., Петронюк Ю. С., Гурьева Т. С., Медникова Е. И. и Зак П. П. Влияние спектральной составляющей повседневного освещения на формирование структур глаза японского перепела Coturnix japonica. Сенсорные системы, 36 (3), 226–233 (2022). doi: 10.31857/S0235009222030088

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies