Relationship between Temperature in the Deep Layers of the Somatosensory Cortex and Blood Flow Velocity in the Brain of Anesthetized Mice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite the obvious importance of temperature in brain function, this parameter still remains insufficiently studied. Temperature is determined by the balance between the release of heat during metabolism and its removal by the bloodstream, which is regulated by neurovascular coupling. In this study, laser speckle contrast imaging and microdiamond thermometry were used for the first time to carry out a long-term simultaneous recording of blood flow velocity and temperature in the brain of anesthetized animals in vivo. To analyze the relationship between temperature and blood flow, two approaches were employed: the use of intraperitoneal adrenaline injection to increase blood flow rate and the application of KCl solution to the surface of the brain to enhance neuronal activity. The data obtained indicate that the temperature of nervous tissue has more complex dynamics when compared to that of blood flow; it is apparently due to the direct or indirect activation of individual neurons and neuronal ensembles. Studies that investigate temperature dynamics can make a significant contribution to the understanding of the mechanisms of neurovascular coupling.

About the authors

A. M Romshin

Prokhorov Institute of General Physics, Russian Academy of Sciences

Moscow, Russia

A. A Osypov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

V. K Krohaleva

Prokhorov Institute of General Physics, Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

S. G Zhuravlev

Prokhorov Institute of General Physics, Russian Academy of Sciences

Moscow, Russia

O. N Egorova

Prokhorov Institute of General Physics, Russian Academy of Sciences

Moscow, Russia

I. I Vlasov

Prokhorov Institute of General Physics, Russian Academy of Sciences

Moscow, Russia

I. Yu Popova

Prokhorov Institute of General Physics, Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: I-Yu-Popova@yandex.ru
Moscow, Russia; Moscow, Russia

References

  1. Kiyatkin E. A. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin), 6 (4), 271–333 (2019). doi: 10.1080/23328940.2019.1691896
  2. Sung D., Risk B. B., Wang K. J., Allen J. W., and Fleischer C. C. Resting-state brain temperature: dynamic fluctuations in brain temperature and the brainbody temperature gradient. J. Magn. Reson. Imaging, 57 (4),1222–1228 (2023). doi: 10.1002/jmri.28376
  3. Minamisawa H., Nordstrom C. H., Smith M. L., and Siesjö B. K. The influence of mild body and brain hypothermia on ischemic brain damage. J. Cereb. Blood Flow Metab., 10 (3), 365–374 (1990). doi: 10.1038/jcbfm.1990.66
  4. Blatteis C. M. The onset of fever: new insights into its mechanism. Prog. Brain Res., 162, 3–14 (2007). doi: 10.1016/S0079-6123(06)62001-3
  5. Moltz H. Fever: causes and consequences. Neurosci. Biobehav. Rev., 17 (3), 237–369 (1993). doi: 10.1016/s0149-7634(05)80009-0
  6. Siesjö B. K. Brain energy metabolism (John Wiley & Sons, New York, 1978).
  7. Falk D. Brain evolution in Homo: The “radiator” theory. Behav. Brain Sci., 13 (2), 333–344 (1990). DOI: https://doi.org/10.1017/S0140525X00078973
  8. Dehkharghani S. and Qiu D. MR thermometry in cerebrovascular disease: physiologic basis, hemodynamic dependence, and a new frontier in stroke imaging. AJNR Am. J. Neuroradiol., 41 (4), 555–565 (2020). doi: 10.3174/ajnr.A6455
  9. Zhu M., Ackerman J. J., and Yablonskiy D. A. Body and brain temperature coupling: the critical role of cerebral blood flow. J. Comp. Physiol. B, 179 (6), 701–710 (2009). doi: 10.1007/s00360-009-0352-6
  10. Nybo L., Secher N. H., and Nielsen B. Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J. Physiol. 545 (2), 697–704 (2002). doi: 10.1113/jphysiol.2002.030023
  11. Yablonskiy D. A., Ackerman J. J., and Raichle M. E. Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc. Natl. Acad. Sci. USA, 97 (13), 7603–7608 (2000). doi: 10.1073/pnas.97.13.7603
  12. McIlvoy L. Comparison of brain temperature to core temperature: A review of the literature. J. Neurosci. Nurs., 36 (1), 23–31 (2004). doi: 10.1097/01376517-200402000-00004
  13. Williams L. R. and Leggett R. W. Reference values for resting blood flow to organs of man. Clin. Phys. Physiol. Meas., 10 (3), 187–217 (1989). doi: 10.1088/0143-0815/10/3/001
  14. Baker M. A. and Chapman L. W. Rapid brain cooling in exercising dogs. Science, 195 (4280), 781–783 (1977). doi: 10.1126/science.836587
  15. Jessen C. Selective brain cooling in mammals and birds. Jpn. J. Physiol., 51 (3), 291–301 (2001). doi: 10.2170/jjphysiol.51.291
  16. Drew P. J. Neurovascular coupling: motive unknown. Trends Neurosci., 45 (11), 809–819. (2022). doi: 10.1016/j.tins.2022.08.004
  17. Gordon G. R., Choi H. B., Rungta R. L., EllisDavies G. C., and MacVicar B. A. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature, 456 (7223), 745–749 (2008). doi: 10.1038/nature07525
  18. Paxinos G., Franklin K. B. J., S. D.: Academic Press (2001). Paxinos G. and Franklin K. B. J. The Mouse Brain in Stereotaxic Coordinates. 2nd Edition (Acad. Press, San Diego, 2001).
  19. Winship I. R. Laser speckle contrast imaging to measure changes in cerebral blood flow. Methods Mol. Biol. (Clifton, NJ), 135, 223–235 (2014). doi: 10.1007/978-1-4939-0320-7_19
  20. Romshin A. M., Zeeb V., Martyanov, A. K., Kudryavtsev O. S., Sedov V. S., Ralchenko V. G., Sinogeykin A. G., and Vlasov I. I. A new approach to precise mapping of local temperature fields in submicrometer aqueous volumes. Sci Rep., 11, 14228 (2021). doi: 10.1038/s41598-021-93374-7
  21. Malkov A., Ivanov A. I., Popova I., Mukhtarov M., Gubkina O., Waseem T., Bregestovski P., and Zilberter Y. Reactive oxygen species initiate a metabolic collapse in hippocampal slices: potential trigger of cortical spreading depression. J. Cereb. Blood Flow Metab., 34 (9), 1540–1549 (2014). doi: 10.1038/jcbfm.2014.121.
  22. Fedotov I. V., Solotenkov M. A., Pochechuev M. S., Ivashkina O. I., Kilin S. Ya., Anokhin K. V., and Zheltikov A. M. All-optical brain thermometry in freely moving animals. ACS Photonics, 7, 3353–3360 (2020). doi: 10.1021/acsphotonics.0c00706
  23. Petrini G., Tomagra G., Bernardi E., Moreva E., Traina P., Marcantoni A., Picollo F., Kvaková K., Cígler P., Degiovanni I. P., Carabelli V., and Genovese M. Nanodiamond–quantum sensors reveal temperature variation associated to hippocampal neurons firing. Adv. Sci., 9 (28), e2202014 (2022). doi: 10.1002/advs.202202014
  24. Marín J. and Rivilla F. Nerve endings and pharmacological receptors in cerebral vessels. Gen. Pharmacol., 13 (5), 361–368 (1982). doi: 10.1016/0306-3623(82)90100-8
  25. Toussay X., Basu K., Lacoste B., and Hamel E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J. Neurosci., 33 (8), 3390–3401 (2013). doi: 10.1523/JNEUROSCI.3346-12.2013X
  26. Abdul-Rahman A., Dahlgren N., Johansson B. B., and Siesjö B. K. Increase in local cerebral blood flow induced by circulating adrenaline: involvement of bloodbrain barrier dysfunction. Acta Physiol Scand., 107 (3), 227–332 (1979). doi: 10.1111/j.1748-1716.1979.tb06467.x
  27. N. Dahlgren, I. Rosen, T. Sakabe, and Siesjö B. K. Cerebral functional, metabolic and circulatory effects of intravenous infusion of adrenaline in the rat. Brain Res., 184 (1), 143–152 (1980). doi: 10.1016/0006-8993(80)90593-4
  28. Sokrab T. E. and Johansson B. B. Regional cerebral blood flow in acute hypertension induced by adrenaline, noradrenaline and phenylephrine in the conscious rat. Acta Physiol. Scand., 137 (1), 101–106 (1989). doi: 10.1111/j.1748-1716.1989.tb08725.x
  29. Borchardt R.T. Catechol o-methyltransferase. Methods Enzymol., 77, 267–272 (1981). doi: 10.1016/s0076-6879(81)77036-8
  30. Del Franco A. P. and Newman E. A. Astrocyte β-adrenergic receptor activity regulates NMDA receptor signaling of medial prefrontal cortex pyramidal neurons. J. Neurosci., 44 (2), e0990232023 (2023). DOI: 10.1523/ JNEUROSCI.0990-23.2023
  31. Reyner-Parra D., Bonet C., Seara T. M., and Huguet G. Traveling waves in a model for cortical spreading depolarization with slow–fast dynamics. Chaos, 33 (8), 083154 (2023). doi: 10.1063/5.0160509
  32. Sawant-Pokam P. M., Suryavanshi P., Mendez J. M., Dudek F. E., and Brennan K. C. Mechanisms of neuronal silencing after cortical spreading depression. Cereb. Cortex., 27 (2), 1311–1325 (2017). doi: 10.1093/cercor/bhv328P
  33. Kaufmann D., Theriot J. J., Zyuzin J., Service C. A., Chang J. C., Tang Y. T., Bogdanov V. B., Multon S., Schoenen J., Ju Y. S., and Brennan K.C. Heterogeneous incidence and propagation of spreading depolarizations. J. Cereb. Blood Flow Metab., 37 (5), 1748–1762 (2017). doi: 10.1177/0271678X16659496D
  34. Xu S., Chang J. C., Chow C. C., Brennan K. C., and Huang H. A mathematical model for persistent postCSD vasoconstriction. PLoS Comput. Biol., 16 (7), e1007996 (2020). doi: 10.1371/journal.pcbi.1007996S
  35. Busija D. W., Bari F., Domoki F., Horiguchi T., and Shimizu K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog. Neurobiol., 86 (4), 379–395 (2008). doi: 10.1016/j.pneurobio.2008.09.008D
  36. Hsieh B. Y., Kao Y.-C., Zhou J. N., Lin Yi.-P., Mei Yu.-Y., Chu S.-Yu., and Wu D.-Ch. Vascular responses of penetrating vessels during cortical spreading depolarization with ultrasound dynamic ultrafast Doppler imaging. Front. Neurosci., 16, 1015843 (2022). doi: 10.3389/fnins.2022.1015843
  37. Wang Y., Wang Y., Yue G., and Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front. Physiol., 14, 1133528 (2023). doi: 10.3389/fphys.2023.1133528Y
  38. Chrétien D., Bénit P., Ha H. H., Keipert S., ElKhoury R., Chang Y. T., Jastroch M., Jacobs H. T., Rustin P., and Rak M. Mitochondria are physiologically maintained at close to 50°C. PLoS Biol. 16 (1), e2003992 (2018). doi: 10.1371/journal.pbio.2003992D
  39. Romshin A. M., Osypov A. A., Popova I. Y., Zeeb V. E., Sinogeykin A. G., and Vlasov I. I. Heat release by isolated mouse brain mitochondria detected with diamond thermometer. Nanomaterials (Basel), 13 (1), 98 (2023). doi: 10.3390/nano13010098

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies