Stability of Hypotensive Activity in Freeze-Dried Preparations of Dinitrozyl Iron Complexes with Glutathione (“Oxacom”) throughout the Period of Storage for 15 Years at Ambient Temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been demonstrated that “Oxacom”, a freeze-dried preparation, retains, throughout its period of storage in the ampoule in the absence of oxygen for 15 years at ambient temperature, the same hypotensive activity due to the presence of a binuclear form of dinitrosyl iron complex with glutathione. It is suggested that an oxidation reaction where glutathione ligands as constituents of dinitrosyl iron complexes react with the oxygen, the content of which gradually increase in the preparation, could lead to the degradation of these complexes, but it was prevented due to the presence of a considerable amount of free, not included in dinitrosyl iron complexes glutathione molecules in this preparation.

About the authors

A. F Vanin

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: vanin.dnic@gmail.com
Moscow, Russia

A. A Abramov

E.I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

A. A Timoshin

E.I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

V. L Lakomkin

E.I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

N. A Tkachev

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

References

  1. E. I. Chazov, O. V. Rodnenkov, A. V. Zorin, V. L. Lakomkin, V. V. Gramovich, O. N. Vyborov, A. G. Dragnev, А. А. Timoshin, L. I. Buryachkovskaya, A. A. Abramov, V. P. Massenko, E. V. Arzamastsev, V. I. Kapelko, and A. F. Vanin, Hypotensive effect of Oxacom® containing a dinitrosyl iron complex with glutathione: Animal studies and clinical trials on healthy volunteers. Nitric Oxide, 26 (3), 148–156 (2012). doi: 10.1016/j.niox.2012.01.008
  2. Vanin A. F., Malenkova I. V., and Serezhenkov V. A. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide, 1, 191–203 (1997).
  3. Costanzo S., Ménage S., Purrello R., Bonomo R. P., and Fontecave M. Re-Examination of the formation of dinitrosyl–iron complexes during reaction of S-nitrosothiols with Fe (II). Inorg. Chim. Acta, 318 (1–2), 1‒7 (2001). doi: 10.1016/S0020-1693(01)00402-9
  4. Lo Bello M., Nuccetelli M., Cacurri A. M., Stella L., Parker M. W., Rossjohn J., McKinstry W. J., Mozzi A. F., Federici G., Polizio F., Pedersen J. Z., and Ricci G. Human glutathione transferase P1-1 and nitric oxide carriers. J. Biol. Chem. 276, 42138–42145 (2001). DOI: ь10.1074/jbc.M102344200
  5. Vanin A. F., Poltorakov A. P., Mikoyan V. D., бKubrina L. N., Burbaev D. S. Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: Electron paramagnetic resonance and optical studies. Nitric Oxide, 23 (2), 136–149 (2011). doi: 10.1016/j.niox.2010.05.285
  6. Borodulin R. R., Kubrina L. N., Mikoyan V. D., Poltorakov A. P., Shvydkiy V. O., Burbaev D. Sh., Serezhenkov V. A., Yakhontova E. R., and Vanin A. F. Dinitrosyl iron complexes with glutathione as NO and NO+ donors. Nitric Oxide, 29, 4–16 (2013). doi: 10.1016/j.niox.2012.11.001
  7. Vanin A. F. and Burbaev D. Sh. Electronic and spatial structures of water-soluble dinitrosyl iron complexes with thiol-containing ligands underlying their ability to act as nitric oxide and nitrosonium ion donors. J. Biophys., 2011, 878236 (2011). doi: 10.1155/2011/878236
  8. Vanin A. F., Pekshev A. V., Vagapov A. B., Sharapov N. A., Lakomkin V. L., Abramov A. A., Timoshin A. A., and Kapelko V. I. Gaseous nitric oxide and dinitrosyl iron complexes with thiol-containing ligands as potential medicines that can relieve COVID-19. Biophysics, 66 (1), 155–163 (2021). doi: 10.1134/S0006350921010218
  9. Ванин А. Ф., Микоян В. Д. и Ткачев Н. А. Высвобождение катионов нитрозония из динитрозильных комплексов железа при их распаде под действием анионов супероксида или этилендиаминтетраацетата. Биофизика, 67 (6), 1045–1055 (2022). doi: 10.31857/S0006302922060011
  10. Ванин А. Ф. Свободно-радикальная природа молекул монооксида азота как фактор, определяющий их превращение в живых организмах в ионы нитрозония. Биофизика, 65 (3), 421–438 (2020). doi: 10.31857/S0006302920030011
  11. Ванин А. Ф. и Ткачев Н. И. Динитрозильные комплексы железа с тиолсодержащими лигандами как источники универсальных цитотоксинов – катионов нитрозония. Биофизика, 68, 421–434 (2023). doi: 10.31857/S0006302923030018, EDN: FPGKAY
  12. Vanin A. F., Dinitrosyl iron complexes as a “working form” of nitric oxide in living organisms (Cambridge Scholars Publishing, Cambridge, UK, 2019).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies