Interrelation between Composition of Natural Water and a State of Lipid Peroxidation Processes in Biological Objects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interrelation between the composition of components of five samples of natural water and state indices for the lipid peroxidation regulatory system in a model system based on the natural phospholipids was explored and involvement of natural phospholipids in the formation of the toxicity of the natural water was also studied. It is shown that the presence of N- and P-containing compounds in natural water samples leads to inhibition of the processes relevant to lecithin autooxidation and luminescence intensity of luminous bacteria, has a significant effect on the spontaneous aggregation of lecithin, while an increase in the content of hydrophobic compounds results in a higher negative value of the ξ potential of its particles. High sensitivity of the lipid peroxidation regulatory system to the presence of components even at low concentrations in the natural water makes it a promising tool to test the effect of natural water on biological objects. Mathematical processing of UV spectra of the natural water samples with the Gauss method can be used as an express test for the analysis of its hydrochemical composition. The effects of natural water components on the state of membranes of biological objects and intracellular processes are confirmed by means of biotesting methods.

About the authors

L. N Shishkina

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Moscow, Russia

A. S Dubovik

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

V. O Shvydkyi

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

M. V Kozlov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

E. V Shtamm

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

A. G Georgiadi

Institute of Geography, Russian Academy of Sciences

Moscow, Russia

References

  1. Eistnberg D. S. and Kauzmann W, Structure and Properties of Water.(Oxford University Press, New York, 1969).
  2. Зенин С. В. Исследование структуры воды метолом протонного магнитного резонанса. Докл. РАН. 332 (3), 328-329 (1993).
  3. Schindler T, Berg C.. Niedner-Schatterburg G., and Bondybey V. E. Reactions of water clusters H+(H2O)n= 3 -75, with diethyl e4ther. Chem. Phys. 201 (2–3), 491–496 (1995). doi: 10.1016/0301-0104(95)00288X
  4. Смирнов А. Н., Савин А. В. и Сигов А. С., Структурные превращения в жидкой воде. Биофизика, 65 (2), 408–411 (2020). DOI: 10/31867/ S0006302920010258
  5. Коновалов А. И. и Рыжкина И.С. Образование наноассоциатов – ключ к пониманию физико-химических и биологических свойств высокоразбавленных водных растворов. Изв. АН. Сер. химическая, № 1, 1–14 (2014).
  6. Konovalov A. I.. Mal’tseva E. L., Ryzkina I S., Murtazina L. I., Kiseleva Yu. V., Kasparov V. V., Pal’mina N. P. Formation of nanoassociates is a factor determining physicochemical and biological properties of highly diluted solutions. Dokl. Phys. Chem., 456 (2), 86–89 (2014). DOI: 10.1134/ S00125012516114060050
  7. Kononov L. Chemical tractivity and solution structure: on the way to a paradigm shift? RSC Adv., 5, 46718–46734 (2015).
  8. Росс. хим. журн., 58 (5) (1999). (Номер посвящен эффектам, закономерностям и механизмам действия биологически активных веществ в сверхмалых дозах и физических факторов низкой интенсивности.)
  9. Урнышева В. В. и Шишкина Л. Н. Влияние химических токсикантов в широком диапазоне концентраций на характеристики липидов эритроцитов крови мышей. Биофизика, 49 (3), 565–571 (2004).
  10. Zhernovkov V. E., Roshchina I. A., Zubareva G. M., Shmatov G. P., Lokshin B. N., and Pal’mina N. P. The study of thyrotropin-releasing hormone effect in a wide concentration range on the aquifer system by IR-spectroscopy method. Water, 27, 58–68 (2010).
  11. Belov V. V., Belyaeva I. A., Shmatov G. P., Zubareva G. M., and Pal’mina N. P. Dokl. Phys. Chem., 439 (1), 123–126 (2011). doi: 10.1134/S0012401611070013
  12. Chemical and Biological Kinetics. New Horizons. Vol. 2. Biological Kinetics. Ed. by E. B. Burlakova and S. D. Varfolomeev (VSP, Leden-Boston, 2005).
  13. Shtamm E. V., Shvydkiy V. O., Skurlatov Yu. I., and Semenyak L. V. Role of water-soluble compounds of reduced sulfur in the toxic properties of the aquatic environment. In: Antioxidants in systems of varying complexity. Chemical, biochemical and biological aspects. Ed. by L. N. Shishkina, A. N. Goloshchapov, and L. I. Weisfeld (AAP, Toromto, 2020), pp. 119–138.
  14. Кудяшева А. Г., Загорская Н. Г., Раскоша О. В. и Шишкина Л. Н. Регуляция окислительных процессов в органах мышей при действии химических и физических факторов в малых дозах. Биофизика, 66 (4), 741–749 (2021). doi: 10.31857/S0006302921040141
  15. Шишкина Л. Н., Козлов М. В., Повх А. Ю. и Швыдкий В.О. Роль перекисного окисления липидов в оценке последствий воздействия химических токсикантов на биообъекты. Хим. физика. 40 (9), 57–63 (2021). doi: 10.31857/S0207401X21090089
  16. Shvydkiy V., Dolgov S., Dubovik A., Kozlov M., Povkh A., Shishkina L., and Duca G. New Aspects for the Estimation of the State of the Natural Water. Chem. J. Moldova, 17 (2), 35–42 (2022). DOI: org/1019261/cjm.2022.973
  17. Биологические мембраны: методы. Под ред. Дж. Б. С. Финдлея и В. Х. Эванза (Мир, М., 1990).
  18. Шишкина Л. Н., Кушнирева Е. В. и Смотряева М. А. Новые подходы к оценке биоллгических последстви1 воздействия радиации в малых дозах. Радиац. биология. Радиоэкология. 44 (3), 289–295 (2004).
  19. Asakawa T. and Matsushita S. Coloring conditions of thiobarbituric acid test for detesting lipid hydroperoxides. Lipids, 15 (3), 137–140 (1980).
  20. Брин Э. Ф. и Травин С. О. Моделирование механизма химических реакций. Хим. физика, 10 (6), 830–837 (1991).
  21. Берия Л. В., Исмаилов А. Д. и Данилов В. С. Стимуляция биолюминесцентной активности бактериальной люциферазы продуктами Fe2+-индуцированного перекисного окисления липидов. Биохимия, 56 (3), 477–485 (1991).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies