Effects of Viral Lysis on Light Absorption Properties of Black Sea Microalgae Tetraselmis viridis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Spectrophotometry was used to investigate the effects of viral lysis on the absorbance properties of microalgal culture Tetraselmis viridis inoculated with virus, and compare them to control (growth of control culture of the microalgal culture without inoculated virus). Some peculiarities of methodological approach to conducting multi-day experiments were brought to attention, taking into the natural titers of algal viruses, equal volumes of the marine microbiota (algal viruses or nutrient medium, microalgal cultures) and conditions (temperature, illumination) in the experiment and control, preventing possible viral contamination of microalgae in the control. It has been established that in the dynamics of experiments during the destruction (lysis) of viral hosts (microalgae cells), an increase in the amount of dissolved organic material is observed.

About the authors

S. A Sholar

Federal Research Center «Marine Hydrophysical Institute of the Russian Academy of Sciences»

Email: sa.sholar@mail.ru
Sevastopol, Russia

O. A Stepanova

Institute of Natural and Technical Systems, Russian Academy of Sciences

Email: solar-ua@ya.ru
Sevastopol, Russia

References

  1. Fuhrman J. A. and Suttle C. A. Viruses in marine planktonic systems. Oceanography, 6 (2), 51–63 (1993). doi: 10.5670/oceanog.1993.14
  2. Suttle C. A. Marine viruses—major players in the global ecosystem. Nature Rev. Microbiol., 5 (10), 801–812. (2007). doi: 10.1038/nrmicro1750
  3. Mendzhul M. I., Lysenko T. G., and Syrchin S. A. Development of cyanobacterial phages at the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine (History and perspectives). Mikrobiol. Zhurn., 65 (1), 133–140 (2003). EDN: OHZKQG
  4. Sholar S. A. and Stepanova O. A. The Role of Viruses and Viral Lysis in Changing the Optical Properties of the Water Environment of their Habitat. Biophysics, 66 (2), 182–191 (2021). DOI: 10.1134/ S0006350921020226
  5. Ли М. Е. Г. и Шоларь С. А. Мобильная установка для определения в режиме удаленного доступа влияния штаммов черноморских альговирусов и вирусного лизиса представителей фитопланктона на оптикофизические свойства морской воды. Патент РФ на изобретение № 2759907 C1, Бюл. № 32 (2021). EDN: RSLILU
  6. Vincent F., Gralka M., Schleyer G., Schatz D., Cabrera-Brufau M., Kuhlisch C., Sichert A., VidalMelgosa S., Mayers K., Barak-Gavish N., Flores J. M., Masdeu-Navarro M., Egge J. K., Larsen A., Hehemann J.-H., Marrasé C., Simó R., Cordero O. X., and Vardi A. Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms. Nature Commun., 14 (1), 510 (2023). doi: 10.1038/s41467-023-36049-3
  7. Токарев Ю. Н., Финенко 3. 3. и Шадрин Н. В. Микроводоросли Черного моря: проблемы сохранения биоразнообразия и биотехнологического использования (ИнБЮМ, Севастополь, 2008). EDN: YWHYTB
  8. Горбунова С. Ю. и Тренкеншу Р. П. Опыт получения альгологически чистой культуры Tetraselmis viridis Rouch. в нестерильных условиях. Вопр. соврем. альгологии, 1 (22), 94–100 (2020). doi: 10.33624/2311-0147-2020-1(22)-94-100, EDN: YMNLAP
  9. Das P., Thaher M. I., Hakim M. A. Q. M. A., AlJabri H. M. S. J., and Alghasal G. S. H. S. . A comparative study of the growth of Tetraselmis sp. in large scale fixed depth and decreasing depth raceway ponds. Bioresource Technol., 216, 114–120 (2016). doi: 10.1016/j.biortech.2016.05.058
  10. Pulz O. and Gross W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 65 (6), 635–648 (2004). doi: 10.1007/s00253-004-1647-x
  11. Griffiths M. J., van Hille R. P., and Harrison S. T. L. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J. Appl. Phycol., 24, 989– 1001 (2012). doi: 10.1007/s10811-011-9723-y
  12. Kleivdal H., Chauton M. S., and Reitan K. I. Industrial production of marine microalgae as a source of EPA and DHA rich raw material in fish feed–Basis, knowledge status and possibilities (SINTEF, Bergen, 2013).
  13. Bucher H. C., Hengstler P., Schindler C., and Meier G. N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am. J. Med., 112 (4), 298–304 (2002). doi: 10.1016/S0002-9343(01)01114-7
  14. Whelan J. Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J. Nutrition, 139 (1), 5-10 (). DOI: 10.3945/ jn.108.094268
  15. Ulmann L., Blanckaert V., Mimouni V., Andersson M., Schoefs B., and Chénais B. Microalgal fatty acids and their implication in health and disease. Mini Rev. Med. Chem., 17 (12), 1112–1123 (2017). doi: 10.2174/1389557516666160722132736
  16. Stepanova O. A. Black Sea algal viruses. Russ. J. Mar. Biol., 42 (2), 123–127 (2016). DOI: 10.1134/ S1063074016020103
  17. Stepanova O. A., Boĭko A. L., and Shcherbatenko I. S. Computational genome analysis of three marine algoviruses. Mikrobiol. Zhurn., 75 (5), 76-81 (2013).
  18. https://solinstruments.by/produkciya/spektrofotometry/mc-122/dopolnitelnoe-oborudovanie/
  19. Тренкеншу Р. П. и Лелеков А. С., Моделирование роста микроводорослей в культуре (ООО «Константа», Белгород, 2017). EDN: XTJPCH
  20. Новикова Т. М. Влияние средней поверхностной освещенности на ростовые характеристики Tetraselmis viridis. Вопр. соврем. альгологии, № 1 (13) (2017). EDN ZCDLNP.
  21. Чернышев Д. Н., Горбунова С. Ю. и Тренкеншу Р. П. Разделение спектров поглощения культуры и ацетонового экстракта микроводоросли Tetraselmis viridis на спектры отдельных пигментов. Актуал. вопр. биол. физики и химии, 5 (2), 232–238 (2020). EDN: UVYKFN
  22. Simis S. G. H., Tijdens M., Hoogveld H. L., and Gons H. J. Optical changes associated with cyanobacterial bloom termination by viral lysis. J. Plankton Res., 27 (9), 937–949 (2005). doi: 10.1093/plankt/fbi068, EDN: IYRQHR

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies