Inhibitory Effect of Oxibiol on the Process of Protein Modification by Water-Soluble Products of Photo-Oxidative Destruction of Bisretinoid A2E

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has previously been shown that heteroaromatic antioxidant oxibiol (N-acetylcysteinate 6-hydroxy-2-aminobenzothiazole) inhibits the process of fructosylation of serum albumin. The aim of this study is to elucidate the inhibitory effect of oxibiol on modification of proteins by photodegradation products of bisretinoid A2E, the main fluorophore of lipofuscin granules in retinal pigment epithelial cells of the human eye. It was shown that unlike a water-soluble fraction fraction from non-irradiated A2E-liposomes, a water-soluble fraction formed after irradiation of A2E-liposomes with visible light significantly modified albumin in a day after incubation at 37°C. Oxibiol in millimolar concentrations effectively inhibited this process. The inhibitory effect of oxybiol could be attributed to its antioxidant activity and the ability to compete with reactive aldehydes formed during the photooxidative degradation of A2E-cardiolipin liposomes. The acute toxicity of oxibiol in mice after intraperitoneal injection was studied, the values of LD 10 and LD 50 were determined. The results obtained demonstrate that oxibiol can be used in pharmacology for preventing and curing diseases associated with the development of oxidative stress in various fields of medicine, primarily in ophthalmology.

About the authors

A. E Dontsov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

N. L Aronshtam

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: nsakina@mail.ru
Moscow, Russia

M. A Ostrovsky

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

References

  1. Островский М. А. Молекулярная физиология зрительного пигмента родопсина: актуальные направления. Рос. физиол. журн. имени И. М. Сеченова, 106 (4), 401–420 (2020). DOI: 10.31857/ S0869813920040056
  2. Vistoli G., De Maddis D., Cipak A., Zarkovic N., Carini M., and Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 47 (Suppl. 1), 3–27 (2013). doi: 10.3109/10715762.2013.815348
  3. DeGroot J. The AGE of the matrix: chemistry, consequence and cure. Curr. Opin. Pharmacol. 4 (3), 301–305 (2004). doi: 10.1016/j.coph.2004.01.007
  4. Höhn A., König J., and Grune T. Protein Oxidation in Aging and the Removal of Oxidized Proteins. J. Proteomics, 92, 132–159 (2013). doi: 10.1016/j.jprot.2013.01.004
  5. Sibbersen C. and Johannsen M. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem. 64 (1), 97–110 (2020). doi: 10.1042/EBC20190057
  6. Yamagishi S., Nakamura K., Matsui T., Noda Y., and Imaizumi T. Receptor for advanced glycation end products (RAGE): a novel therapeutic target for diabetic vascular complication. Curr. Pharm. Des., 14 (5),487– 495 (2008). doi: 10.2174/138161208783597416
  7. Kang Q. and Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol., 37, 101799 (2020). doi: 10.1016/j.redox.2020.101799
  8. Sparrow J. R., Gregory-Roberts E., Yamamoto K., Blonska A., Ghosh S. K., Ueda K., and Zhou J. The bisretinoids of retinal pigment epithelium. Prog. Retin. Eye Res., 31 (2), 121–135 (2012). doi: 10.1016/j.preteyeres.2011.12.001
  9. Zhou J., Ueda K., Zhao J., and Sparrow J. R. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J. Biol. Chem., 290 (45), 27215–27227 (2015). doi: 10.1074/jbc.M115.680363
  10. Feldman T. B., Dontsov A. E., Yakovleva M. A., and Ostrovsky M. A. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys. Rev., 14 (4), 1051–1065 (2022). doi: 10.1007/s12551-022-00989-9
  11. Dontsov A., Yakovleva M., Trofimova N., Sakina N., Gulin A., Aybush A., Gostev F., Vasin A., Feldman T., and Ostrovsky M. Water-soluble products of photooxidative destruction of the bisretinoid A2E cause proteins modification in the dark. Int. J. Mol. Sci., 23 (3), 1534 (2022). doi: 10.3390/ijms23031534
  12. Parmar V. M., Parmar T., Arai E., Perusek L., and Maeda A. A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res., 27, 95–104 (2018). doi: 10.1016/j.scr.2018.01.014
  13. Zhang D., Mihai D. M., and Washington I. Vitamin A cycle byproducts explain retinal damage and molecular changes thought to initiate retinal degeneration. Biol. Open., 10 (11), bio058600 (2021). DOI: 10.1242/ bio.058600
  14. Смирнов Л. Д. Химическая и биологическая кинетика. Новые горизонты (Химия, М., 2005).
  15. Сакина Н. Л., Голубков А. М., Смирнов Л. Д., Островский М. А. и Донцов А. Е. Исследование фотозащитных свойств нового класса гетероароматических антиоксидантов. Бюл. эксперим. биологии и медицины, 147 (2), 152–154 (2009).
  16. Smirnov L. D., Kuznetsov Y. V., Proskuryakov S. Y., Skvortsov V. G., Nosko T. N., and Dontsov A. E. Antiradical and NO-Inhibiting activities of β-hydroxy(ethoxy) derivatives of nitrous heterocycles. Biophysics, 56, 276–280 (2011). DOI: 10.1134/ S000635091102028X
  17. Dontsov A. E., Koromyslova A. D., Kuznetsov Yu. V., Sakina N. L., and Ostrovsky M. A. Antiradical and photoprotective activity of oxibiol – a novel water-soluble heteroaromatic antioxidant, Russ. Chem. Bull., 63, 1159–1163 (2014). doi: 10.1007/s11172-014-0565-z
  18. Dontsov A. E., Sakina N. L., Kuznetsov Y. V., and Ostrovsky M. A. Antioxidant and antiglication properties of 6-hydroxy-2-aminobenzothiazole N-acetylcysteinate. Russ. J. Phys. Chem. B, 13, 947–950 (2019). doi: 10.1134/S1990793119060174
  19. Донцов А. Е., Сакина Н. Л., Коромыслова А. Д., Кузнецов Ю. В. и Островский М. А. Средство, обладающее антиоксидантным, фотопротекторным и геропротекторным действием, и способ его получения. Патент РФ № 2458714 (2012).
  20. Parish C. A., Hashimoto M., Nakanishi K., Dillon J., and Sparrow J. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc. Natl. Acad. Sci. USA, Dec 8; 95 (25), 14609–14613 (1998). DOI: 10.1073/ pnas.95.25.14609
  21. Методические рекомендации по изучению общетоксического действия фармакологических средств, утвержденные МинЗдравом РФ 29.12.1997г. Ведомости Фармакоп. Комитета, 1, 27–32 (1998).
  22. Яковлева М. А., Васин А. А., Донцов А. Е., Гулин А. А., Айбуш А. В., Фельдман Т. Б. и Островский М. А. Физико-химический анализ продуктов фотодеструкции бисретиноида А2Е // Науч.-техн. ведомости СПбГПУ. Физ.-мат. науки. 15 (3.2), 285–290 (2022). DOI: 10.18721
  23. Thornalley P. J. Use of aminoguanidine (Pdine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys., 419 (1), 31–40 (2003). doi: 10.1016/j.abb.2003.08.013
  24. Воронина Т. А.. Интернет-ресурс: mexidol.ru/extra/file/voronina.pdf
  25. Колла В. Э. и Сыропятов Б. Я. Дозы лекарственных средств и химических соединений для лабораторных животных (Медицина, М., 1998).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies