Supercomputer Simulation of Intramolecular Vibrations of Glycine, Diphenylalanine, and Tryptophan in Terahertz and Infrared Electric Fields
- Authors: Baranov M.A1, Karseeva E.K1, Tsybin O.Y.1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: Vol 69, No 2 (2024)
- Pages: 213-229
- Section: Articles
- URL: https://journals.rcsi.science/0006-3029/article/view/257569
- DOI: https://doi.org/10.31857/S0006302924020016
- EDN: https://elibrary.ru/OVYPQX
- ID: 257569
Cite item
Abstract
About the authors
M. A Baranov
Peter the Great St. Petersburg Polytechnic University
Email: baranovma1993@gmail.com
St. Petersburg, Russia
E. K Karseeva
Peter the Great St. Petersburg Polytechnic UniversitySt. Petersburg, Russia
O. Yu Tsybin
Peter the Great St. Petersburg Polytechnic UniversitySt. Petersburg, Russia
References
- Fröhlich H. The Biological Effects of Microwaves and Related Questions. In Advances in Electronics and Electron Physics, Ed. by L. Marton and C. Marton (Academic Press, 1980), v. 53, pp. 85–152. doi: 10.1016/S0065-2539(08)60259-0
- Zhang Q., Shao D., Xu P., and Jiang Z. Effects of an electric field on the conformational transition of the protein: Pulsed and oscillating electric fields with different frequencies. Polymers (Basel), 14 (1), 123 (2022). doi: 10.3390/polym14010123
- Pearson J. F. and Slifkin M. A. The infrared spectra of amino acids and dipeptides. Spectrochim. Acta. Part A – Mol. Spectrosc., 28 (12), 2403–2417 (1972). doi: 10.1016/0584-8539(72)80220-4
- Wolpert M. and Hellwig P. Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm. Spectrochim. Acta. Part A – Mol. Biomol. Spectrosc., 64 (4), 987–1001 (2006). doi: 10.1016/j.saa.2005.08.025
- Mankova A. A., Borodin A. V., Kargovsky A. V., Brandt N. N., Luo Q., Sakodynskaya I. K., Wang K., Zhao H., Chikishev A. Yu., Shkurinov A. P., and Zhang X.-C. Terahertz time-domain and FTIR spectroscopic study of interaction of α-chymotrypsin and protonated tris with 18-crown-6. Chem. Phys. Lett., 560, 55–59 (2013), doi: 10.1016/j.cplett.2012.12.050
- Mankova A. A., Borodin A.V., Kargovsky A.V., Brandt N.N., Kuritsyn I.I., Luo Q., Sakodynskaya I.K., Wang K.J., Zhao H., Chikishev A. Yu., Shkurinov A.P., and Zhang X.-C. Terahertz time-domain and FTIR spectroscopy of tris-crown interaction. Chem. Phys. Lett., 554, 201–207 (2012). doi: 10.1016/j.cplett.2012.10.039
- Balakhnina I. A., Brandt N. N., Mankova A. A., and Chikishev A. Y. The problem of manifestation of tertiary structure in the vibrational spectra of proteins. Vib. Spectrosc., 114, 103250, (2021). doi: 10.1016/j.vibspec.2021.103250
- Balakhnina I. A., Brandt N. N., Chikishev A. Y., Mankova A. A., and Shpachenko I. G. Low-frequency vibrational spectroscopy of proteins with different secondary structures. J. Biomed. Opt., 22 (9), 091509, (2017). doi: 10.1117/1.jbo.22.9.091509
- Brandt N. N., Chikishev A. Yu., Kargovsky A. V., Nazarov M. M., Parashchuk O. D., Sapozhnikov D. A., Smirnova I. N., Shkurinov A. P., Sumbatyan N. V. Terahertz time-domain and Raman spectroscopy of the sulfur-containing peptide dimers: Low-frequency markers of disulfide bridges. Vib. Spectrosc., 47 (1), 53–58 (2008). doi: 10.1016/j.vibspec.2008.01.014
- Mankova A. A., Nagaeva A. I., Brandt N. N., and Chikishev A. Y. Comparison of vibrational spectra of proteins with similar secondary and different tertiary structures. Vib. Spectrosc., 120, 103375 (2022). doi: 10.1016/j.vibspec.2022.103375
- Zhang F., Tominaga K., Hayashi M., and Wang H.-W. Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory. In Proc. SPIE/COS Photonics Asia Infrared, Millimeter-Wave, and Terahertz Technologies III (Beijing, China, 2014), v. 9275, p. 92750D. doi: 10.1117/12.2071528
- Wang W. N., Li H. Q., Zhang Y., and Zhang C. L. Correlations between terahertz spectra and molecular structures of 20 standard α-amino acids. Wuli Huaxue Xuebao/ Acta Phys. – Chim. Sin., 25 (10), 2074–2079 (2009), doi: 10.3866/pku.whxb20090931
- Tulip P. R. and Clark S. J. Dielectric and vibrational properties of amino acids. J. Chem. Phys., 121 (11), 5201–5210 (2004). doi: 10.1063/1.1781615
- Iglesias-Groth S. and Cataldo F. Far-infrared spectroscopy of proteinogenic and other less common amino acids. Monthly Notices Roy. Astronom. Soc., 478 (3), A 3430–3437 (2018). doi: 10.1093/mnras/sty1226.
- Matei A., Drichko N., Gompf B., and Dressel M. Farinfrared spectra of amino acids. Chem. Phys., 316 (1– 3), 61–71 (2005). doi: 10.1016/j.chemphys. 2005.04.033
- Yi W., Yu J., Xu Yu., Wang F., Yu Q., Sun H., Xu L., Liu Yu., and Jiang L. Broadband terahertz spectroscopy of amino acids. Instrum. Sci. Technol., 45 (4), 423– 439 (2017). doi: 10.1080/10739149.2016.1270961
- Ding T., Middelberg A. P. J., Huber T., and Falconer R. J. Far-infrared spectroscopy analysis of linear and cyclic peptides, and lysozyme. Vib. Spectrosc., 61, 144–150 (2012). doi: 10.1016/j.vibspec.2012.02.020
- Oomens J., Steill J. D., and Redlich B. Gas-phase IR spectroscopy of deprotonated amino acids. J. Am. Chem. Soc., 131 (12), 4310–4319 (2009). doi: 10.1021/ja807615v
- Miyamar F., Yamaguchi M., Tani M., Hangyo M., Yamamoto K., and Tominaga K. THz-time-domain spectroscopy of amino acids in solid phase. In Mater. Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science (Baltimore, USA, 2003), paper CMG3. [Online]. Available: https://opg.optica.org/abstract.cfm?uri=CLEO-2003-CMG3.
- Volpati D., Aoki P. H. B., Alessio P., Pavinatto F. J., Miranda P. B., Constantino C. J. L., Oliveira O. N. Jr, Vibrational spectroscopy for probing molecular-level interactions in organic films mimicking biointerfaces. Adv. Colloid Interface Sci., 207 (1), 199–215 (2014). doi: 10.1016/j.cis.2014.01.014
- Gaigeot M. P. and Spezia R. Theoretical methods for vibrational spectroscopy and collision induced dissociation in the gas phase. Top. Curr. Chem., 364, 99–151 (2015). doi: 10.1007/128_2014_620
- Moon J. H., Oh J. Y., and Kim M. S. A systematic and efficient method to estimate the vibrational frequencies of linear peptide and protein ions with any amino acid sequence for the calculation of Rice-Ramsperger-Kassel-Marcus rate constant.. J. Am. Soc. Mass Spectrom., 17 (12), 1749–1757 (2006). DOI: 10.1016/j. jasms.2006.08.001
- Millefiori S., Alparone A., Millefiori A., and Vanella A. Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids. Biophys. Chem., 132 (2–3), 139–147 (2008). doi: 10.1016/j.bpc. 2007.11.003
- Бутырская Е. В., Нечаева Л. С., Шапошник В. А. и Дроздова Е. И. Отнесение полос в ИК спектрах водных растворов глицина на основе квантовохимического расчета. Сорбционные и хроматографические процессы, pp. 501–512, 2012.
- Deniz E., et al. “Through bonds or contacts? Mapping protein vibrational energy transfer using non-canonical amino acids,” Nat. Commun., vol. 12, no. 1, p. 3284, Jun. 2021, doi: 10.1038/s41467-021-23591-1
- Зезина Т. И. и Цыбин О. Ю. Субпикосекундная динамика дипольного момента молекулярных полиаланинов. Науч.-техн. ведомости СПбГПУ. Физ.-мат. науки., 10 (4), 100–110 (2017). doi: 10.18721/JPM.10408
- Баранов М. А., Непомнящая Э. К. и Цыбин О. Ю. Фурье-спектр интегрального дипольного момента суперкомпьютерных моделей ряда аминокислот. Науч.-техн. ведомости СПбГПУ. Физ.-мат. науки., 15 (4), 55–68 (2022).
- Ruan X., Ruan X., and Huang H. Application of terahertz spectroscopy in medical microbiological detection. J. Phys.: Conf. Ser., 2425, 012045 (2023). doi: 10.1088/1742-6596/2425/1/012045
- Turton D. A., Senn H. M., Harwood Th., Lapthorn A. J., Ellis E. M., and Wynne K. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun., 3 (5), 3999 (2014). doi: 10.1038/ncomms4999.
- Romanenko S., Begley R., Harvey A. R., Hool L., and Wallace V. P. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. J. Roy. Soc. Interface, 14 (137), 20170585 (2017). doi: 10.1098/rsif.2017.0585
- Wu H. L., Ghaani M. R., Futera Z., and English N. J. Effects of externally applied electric fields on the manipulation of solvated-chignolin folding: staticversus alternating-field dichotomy at play. J. Phys. Chem. B, 126 (2), 376–386 (2022). doi: 10.1021/acs.jpcb.1c06857
- Vaden T. D., De Boer T. S. J. A., Simons J. P., Snoek L. C., Suhai S., and Paizs B. Vibrational spectroscopy and conformational structure of protonated polyalanine peptides isolated in the gas phase. J. Phys. Chem. A, 112 (20), 4608–4616 (2008). doi: 10.1021/jp800069n
- Noble B. B., Todorova N., and Yarovsky I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys. Chem. Chem. Phys., 24 (11), 6327–6348 (2022). doi: 10.1039/d1cp05510k
- Woods K. N. Solvent-induced backbone fluctuations and the collective librational dynamics of lysozyme studied by terahertz spectroscopy. Phys. Rev. E, 81 (3), 031915 (2010). doi: 10.1103/PhysRevE.81.031915
- Niehues G., Heyden M., Schmidt D. A., and Havenith M. Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids. Faraday Discussions, 150, 193–207 (2011). doi: 10.1039/c0fd00007h
- Jeong S.-Y., Cheon H., Lee D., and Son J.-H. Determining terahertz resonant peaks of biomolecules in aqueous environment. Opt. Express, 28 (3), 3854 (2020). doi: 10.1364/oe.381529
- Grechko M., Hasegawa T., D’Angelo F., Turchinovich D., Nagata Yu., and Bonn M. Coupling between intra-and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy. Nat. Commun., 9 (1), 885 (2018). doi: 10.1038/s41467-018-03303-y
- Xu J., Galan J., Ramian G., Savvidis P., Scopatz A., Birge R. R., Allen S. J., and Plaxco K. Terahertz circular dichroism spectroscopy of biomolecules. In Proc. SPIE, Chemical and Biological Standoff Detection, 5268, 19 (2004). doi: 10.1117/12.518533
- Beyer C., Christen P., Jelesarov I., and Fröhlich J. Real-time assessment of possible electromagnetic-fieldinduced changesin protein conformationand thermal stability. Bioelectromagnetics, 35 (7), 470–478 (2014). doi: 10.1002/bem.21865
- Calabrò E. and Magazù S. Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer. Electromagn. Biol. Med., 37 (3), 155–168 (2018). doi: 10.1080/15368378.2018.1499031
- English N. J. and Waldron C. J. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Phys. Chem. Chem. Phys., 17 (19), 12407–12440 (2015), doi: 10.1039/c5cp00629e
- Floros S., Liakopoulou-Kyriakides M., Karatasos K., and Papadopoulos G. E. Frequency dependent nonthermal effects of oscillating electric fields in the microwave region on the properties of a solvated lysozyme system: A molecular dynamics study. PLoS One, 12 (1), e0169505 (2017). doi: 10.1371/journal.pone.0169505
- Wang H., Schütte Ch., Ciccotti G., and Site L. D. Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation. J. Chem. Theory Comput., 10 (4), 1376–1386 (2014). doi: 10.1021/ct400993e
- Solomentsev G. Y., English N. J., and Mooney D. A. Effects of external electromagnetic fields on the conformational sampling of a short alanine peptide. J. Comput. Chem., 33 (9), 917–923 (2012). doi: 10.1002/jcc.22912
- Непомнящая Э. К., Баранов М. А. и Цыбин О. Ю. Компьютерная резонансная динамика молекулы глицина в электрическом поле инфракрасного диапазона. Письма в ЖТФ, 49 (7), 8–11 (2023). doi: 10.21883/PJTF.2023.07.54913.19435
- Mohamed M. E. and Abdelhafeez M. A. Experimental and computational vibration study of amino acids. Int. Lett. Chem. Phys. Astron., 15 (1), 1–17 (2013). doi: 10.56431/p-177d2l
- Barth A. and Zscherp C. What vibrations tell us about proteins. Quart. Rev. Biophys., 35 (4), 369–430 (2002). doi: 10.1017/S0033583502003815
- Ma X. J., Zhao H. W., Dai B., and Ge M. Progress in application of THz-TDS to protein study. Guang Pu Xue Yu Guang Pu Fen Xi / Spectroscopy Spectr. Anal., 28 (10), 2237–2242 (2008). Accessed: Feb. 16, 2023. [Online]. Available: https://europepmc.org/article/med/19123380
- Özer Z., Gök S., Altan H., and Severcan F. Concentration-based measurement studies of L-tryptophan using terahertz time-domain spectroscopy (THz-TDS). Appl. Spectrosc., 68 (1), 95–100 (2014). doi: 10.1366/13-07165
- Reale R., English N. J., Marracino P., Liberti M., and Apollonio F. Dipolar response and hydrogen-bond kinetics in liquid water in square-wave time-varying electric fields. Mol. Phys., 112 (14), 1870–1878 (2014). doi: 10.1080/00268976.2013.867081
- Mancini T., Mosetti R., Marcelli A., Petrarca M., Lupi S., and D’Arco A. Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status. Radiation, 2 (1), 100–123 (2022). doi: 10.3390/radiation2010008
- Sanders T. J., Allen J. L., Plathe R., Horvat J., and Lewis R. A. The 3, 5, 6, and 7 THz resonances of α-glycine. Spectrochim. Acta. Part A – Mol. Biomol. Spectrosc., 253, 119544 (2021). doi: 10.1016/j.saa.2021.119544
- Panicker C. Y., Varghese H. T., Mary Y. S. A., Kumar G. K., Harikumar B., Raju K., Devi P. S. A. Vibrational spectroscopic study of glycine molecule. Mater. Sci. Res. India, 7 (1), 239–243 (2010). doi: 10.13005/msri/070133
- Zhang F., Wang H. W., Tominaga K., and Hayashi M. Intramolecular vibrations in low-frequency normal modes of amino acids: L -alanine in the neat solid state. J. Phys. Chem. A, 119 (12), 3008–3022 (2015). doi: 10.1021/jp512164y
- Iglesias-Groth S. and Cataldo F. Far-infrared spectroscopy of proteinogenic and other less common amino acids. Mon. Not. R. Astron. Soc., 478 (3), 3430–3437 (2018). doi: 10.1093/MNRAS/STY1226
- Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol., 74 (3–5), 141–173 (2000), doi: 10.1016/S0079-6107(00)00021-3
- English N. J. Molecular simulation of external electric fields on the crystal state: a perspective. Crystals, 11 (11), 1405 (2021). doi: 10.3390/cryst11111405
Supplementary files
