Supercomputer Simulation of Intramolecular Vibrations of Glycine, Diphenylalanine, and Tryptophan in Terahertz and Infrared Electric Fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for analyzing intramolecular vibrations of the amino acid like glycine, diphenylalanine and tryptophan in terahertz and infrared electric fields has been implemented with Fourier frequency spectrum calculation of the integral dipole moment amplitude-time realizations. Realizations lasting up to 2 ns were obtained by supercomputer modeling with a sampling step of 1 fs. The results obtained showed new possibilities of applying this method, in which the electric field simulated with a symmetrical meander was used for the first time. Our findings deepen the current understanding about dynamic properties of biomoleculaes in external electromagnetic radiation. These data can also be used in the development of nanobiotechnologies, bioelectronic and heterogenous hybrid microelectronic devices with embedded biomolecular components.

About the authors

M. A Baranov

Peter the Great St. Petersburg Polytechnic University

Email: baranovma1993@gmail.com
St. Petersburg, Russia

E. K Karseeva

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

O. Yu Tsybin

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

References

  1. Fröhlich H. The Biological Effects of Microwaves and Related Questions. In Advances in Electronics and Electron Physics, Ed. by L. Marton and C. Marton (Academic Press, 1980), v. 53, pp. 85–152. doi: 10.1016/S0065-2539(08)60259-0
  2. Zhang Q., Shao D., Xu P., and Jiang Z. Effects of an electric field on the conformational transition of the protein: Pulsed and oscillating electric fields with different frequencies. Polymers (Basel), 14 (1), 123 (2022). doi: 10.3390/polym14010123
  3. Pearson J. F. and Slifkin M. A. The infrared spectra of amino acids and dipeptides. Spectrochim. Acta. Part A – Mol. Spectrosc., 28 (12), 2403–2417 (1972). doi: 10.1016/0584-8539(72)80220-4
  4. Wolpert M. and Hellwig P. Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm. Spectrochim. Acta. Part A – Mol. Biomol. Spectrosc., 64 (4), 987–1001 (2006). doi: 10.1016/j.saa.2005.08.025
  5. Mankova A. A., Borodin A. V., Kargovsky A. V., Brandt N. N., Luo Q., Sakodynskaya I. K., Wang K., Zhao H., Chikishev A. Yu., Shkurinov A. P., and Zhang X.-C. Terahertz time-domain and FTIR spectroscopic study of interaction of α-chymotrypsin and protonated tris with 18-crown-6. Chem. Phys. Lett., 560, 55–59 (2013), doi: 10.1016/j.cplett.2012.12.050
  6. Mankova A. A., Borodin A.V., Kargovsky A.V., Brandt N.N., Kuritsyn I.I., Luo Q., Sakodynskaya I.K., Wang K.J., Zhao H., Chikishev A. Yu., Shkurinov A.P., and Zhang X.-C. Terahertz time-domain and FTIR spectroscopy of tris-crown interaction. Chem. Phys. Lett., 554, 201–207 (2012). doi: 10.1016/j.cplett.2012.10.039
  7. Balakhnina I. A., Brandt N. N., Mankova A. A., and Chikishev A. Y. The problem of manifestation of tertiary structure in the vibrational spectra of proteins. Vib. Spectrosc., 114, 103250, (2021). doi: 10.1016/j.vibspec.2021.103250
  8. Balakhnina I. A., Brandt N. N., Chikishev A. Y., Mankova A. A., and Shpachenko I. G. Low-frequency vibrational spectroscopy of proteins with different secondary structures. J. Biomed. Opt., 22 (9), 091509, (2017). doi: 10.1117/1.jbo.22.9.091509
  9. Brandt N. N., Chikishev A. Yu., Kargovsky A. V., Nazarov M. M., Parashchuk O. D., Sapozhnikov D. A., Smirnova I. N., Shkurinov A. P., Sumbatyan N. V. Terahertz time-domain and Raman spectroscopy of the sulfur-containing peptide dimers: Low-frequency markers of disulfide bridges. Vib. Spectrosc., 47 (1), 53–58 (2008). doi: 10.1016/j.vibspec.2008.01.014
  10. Mankova A. A., Nagaeva A. I., Brandt N. N., and Chikishev A. Y. Comparison of vibrational spectra of proteins with similar secondary and different tertiary structures. Vib. Spectrosc., 120, 103375 (2022). doi: 10.1016/j.vibspec.2022.103375
  11. Zhang F., Tominaga K., Hayashi M., and Wang H.-W. Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory. In Proc. SPIE/COS Photonics Asia Infrared, Millimeter-Wave, and Terahertz Technologies III (Beijing, China, 2014), v. 9275, p. 92750D. doi: 10.1117/12.2071528
  12. Wang W. N., Li H. Q., Zhang Y., and Zhang C. L. Correlations between terahertz spectra and molecular structures of 20 standard α-amino acids. Wuli Huaxue Xuebao/ Acta Phys. – Chim. Sin., 25 (10), 2074–2079 (2009), doi: 10.3866/pku.whxb20090931
  13. Tulip P. R. and Clark S. J. Dielectric and vibrational properties of amino acids. J. Chem. Phys., 121 (11), 5201–5210 (2004). doi: 10.1063/1.1781615
  14. Iglesias-Groth S. and Cataldo F. Far-infrared spectroscopy of proteinogenic and other less common amino acids. Monthly Notices Roy. Astronom. Soc., 478 (3), A 3430–3437 (2018). doi: 10.1093/mnras/sty1226.
  15. Matei A., Drichko N., Gompf B., and Dressel M. Farinfrared spectra of amino acids. Chem. Phys., 316 (1– 3), 61–71 (2005). doi: 10.1016/j.chemphys. 2005.04.033
  16. Yi W., Yu J., Xu Yu., Wang F., Yu Q., Sun H., Xu L., Liu Yu., and Jiang L. Broadband terahertz spectroscopy of amino acids. Instrum. Sci. Technol., 45 (4), 423– 439 (2017). doi: 10.1080/10739149.2016.1270961
  17. Ding T., Middelberg A. P. J., Huber T., and Falconer R. J. Far-infrared spectroscopy analysis of linear and cyclic peptides, and lysozyme. Vib. Spectrosc., 61, 144–150 (2012). doi: 10.1016/j.vibspec.2012.02.020
  18. Oomens J., Steill J. D., and Redlich B. Gas-phase IR spectroscopy of deprotonated amino acids. J. Am. Chem. Soc., 131 (12), 4310–4319 (2009). doi: 10.1021/ja807615v
  19. Miyamar F., Yamaguchi M., Tani M., Hangyo M., Yamamoto K., and Tominaga K. THz-time-domain spectroscopy of amino acids in solid phase. In Mater. Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science (Baltimore, USA, 2003), paper CMG3. [Online]. Available: https://opg.optica.org/abstract.cfm?uri=CLEO-2003-CMG3.
  20. Volpati D., Aoki P. H. B., Alessio P., Pavinatto F. J., Miranda P. B., Constantino C. J. L., Oliveira O. N. Jr, Vibrational spectroscopy for probing molecular-level interactions in organic films mimicking biointerfaces. Adv. Colloid Interface Sci., 207 (1), 199–215 (2014). doi: 10.1016/j.cis.2014.01.014
  21. Gaigeot M. P. and Spezia R. Theoretical methods for vibrational spectroscopy and collision induced dissociation in the gas phase. Top. Curr. Chem., 364, 99–151 (2015). doi: 10.1007/128_2014_620
  22. Moon J. H., Oh J. Y., and Kim M. S. A systematic and efficient method to estimate the vibrational frequencies of linear peptide and protein ions with any amino acid sequence for the calculation of Rice-Ramsperger-Kassel-Marcus rate constant.. J. Am. Soc. Mass Spectrom., 17 (12), 1749–1757 (2006). DOI: 10.1016/j. jasms.2006.08.001
  23. Millefiori S., Alparone A., Millefiori A., and Vanella A. Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids. Biophys. Chem., 132 (2–3), 139–147 (2008). doi: 10.1016/j.bpc. 2007.11.003
  24. Бутырская Е. В., Нечаева Л. С., Шапошник В. А. и Дроздова Е. И. Отнесение полос в ИК спектрах водных растворов глицина на основе квантовохимического расчета. Сорбционные и хроматографические процессы, pp. 501–512, 2012.
  25. Deniz E., et al. “Through bonds or contacts? Mapping protein vibrational energy transfer using non-canonical amino acids,” Nat. Commun., vol. 12, no. 1, p. 3284, Jun. 2021, doi: 10.1038/s41467-021-23591-1
  26. Зезина Т. И. и Цыбин О. Ю. Субпикосекундная динамика дипольного момента молекулярных полиаланинов. Науч.-техн. ведомости СПбГПУ. Физ.-мат. науки., 10 (4), 100–110 (2017). doi: 10.18721/JPM.10408
  27. Баранов М. А., Непомнящая Э. К. и Цыбин О. Ю. Фурье-спектр интегрального дипольного момента суперкомпьютерных моделей ряда аминокислот. Науч.-техн. ведомости СПбГПУ. Физ.-мат. науки., 15 (4), 55–68 (2022).
  28. Ruan X., Ruan X., and Huang H. Application of terahertz spectroscopy in medical microbiological detection. J. Phys.: Conf. Ser., 2425, 012045 (2023). doi: 10.1088/1742-6596/2425/1/012045
  29. Turton D. A., Senn H. M., Harwood Th., Lapthorn A. J., Ellis E. M., and Wynne K. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun., 3 (5), 3999 (2014). doi: 10.1038/ncomms4999.
  30. Romanenko S., Begley R., Harvey A. R., Hool L., and Wallace V. P. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. J. Roy. Soc. Interface, 14 (137), 20170585 (2017). doi: 10.1098/rsif.2017.0585
  31. Wu H. L., Ghaani M. R., Futera Z., and English N. J. Effects of externally applied electric fields on the manipulation of solvated-chignolin folding: staticversus alternating-field dichotomy at play. J. Phys. Chem. B, 126 (2), 376–386 (2022). doi: 10.1021/acs.jpcb.1c06857
  32. Vaden T. D., De Boer T. S. J. A., Simons J. P., Snoek L. C., Suhai S., and Paizs B. Vibrational spectroscopy and conformational structure of protonated polyalanine peptides isolated in the gas phase. J. Phys. Chem. A, 112 (20), 4608–4616 (2008). doi: 10.1021/jp800069n
  33. Noble B. B., Todorova N., and Yarovsky I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys. Chem. Chem. Phys., 24 (11), 6327–6348 (2022). doi: 10.1039/d1cp05510k
  34. Woods K. N. Solvent-induced backbone fluctuations and the collective librational dynamics of lysozyme studied by terahertz spectroscopy. Phys. Rev. E, 81 (3), 031915 (2010). doi: 10.1103/PhysRevE.81.031915
  35. Niehues G., Heyden M., Schmidt D. A., and Havenith M. Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids. Faraday Discussions, 150, 193–207 (2011). doi: 10.1039/c0fd00007h
  36. Jeong S.-Y., Cheon H., Lee D., and Son J.-H. Determining terahertz resonant peaks of biomolecules in aqueous environment. Opt. Express, 28 (3), 3854 (2020). doi: 10.1364/oe.381529
  37. Grechko M., Hasegawa T., D’Angelo F., Turchinovich D., Nagata Yu., and Bonn M. Coupling between intra-and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy. Nat. Commun., 9 (1), 885 (2018). doi: 10.1038/s41467-018-03303-y
  38. Xu J., Galan J., Ramian G., Savvidis P., Scopatz A., Birge R. R., Allen S. J., and Plaxco K. Terahertz circular dichroism spectroscopy of biomolecules. In Proc. SPIE, Chemical and Biological Standoff Detection, 5268, 19 (2004). doi: 10.1117/12.518533
  39. Beyer C., Christen P., Jelesarov I., and Fröhlich J. Real-time assessment of possible electromagnetic-fieldinduced changesin protein conformationand thermal stability. Bioelectromagnetics, 35 (7), 470–478 (2014). doi: 10.1002/bem.21865
  40. Calabrò E. and Magazù S. Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer. Electromagn. Biol. Med., 37 (3), 155–168 (2018). doi: 10.1080/15368378.2018.1499031
  41. English N. J. and Waldron C. J. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Phys. Chem. Chem. Phys., 17 (19), 12407–12440 (2015), doi: 10.1039/c5cp00629e
  42. Floros S., Liakopoulou-Kyriakides M., Karatasos K., and Papadopoulos G. E. Frequency dependent nonthermal effects of oscillating electric fields in the microwave region on the properties of a solvated lysozyme system: A molecular dynamics study. PLoS One, 12 (1), e0169505 (2017). doi: 10.1371/journal.pone.0169505
  43. Wang H., Schütte Ch., Ciccotti G., and Site L. D. Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation. J. Chem. Theory Comput., 10 (4), 1376–1386 (2014). doi: 10.1021/ct400993e
  44. Solomentsev G. Y., English N. J., and Mooney D. A. Effects of external electromagnetic fields on the conformational sampling of a short alanine peptide. J. Comput. Chem., 33 (9), 917–923 (2012). doi: 10.1002/jcc.22912
  45. Непомнящая Э. К., Баранов М. А. и Цыбин О. Ю. Компьютерная резонансная динамика молекулы глицина в электрическом поле инфракрасного диапазона. Письма в ЖТФ, 49 (7), 8–11 (2023). doi: 10.21883/PJTF.2023.07.54913.19435
  46. Mohamed M. E. and Abdelhafeez M. A. Experimental and computational vibration study of amino acids. Int. Lett. Chem. Phys. Astron., 15 (1), 1–17 (2013). doi: 10.56431/p-177d2l
  47. Barth A. and Zscherp C. What vibrations tell us about proteins. Quart. Rev. Biophys., 35 (4), 369–430 (2002). doi: 10.1017/S0033583502003815
  48. Ma X. J., Zhao H. W., Dai B., and Ge M. Progress in application of THz-TDS to protein study. Guang Pu Xue Yu Guang Pu Fen Xi / Spectroscopy Spectr. Anal., 28 (10), 2237–2242 (2008). Accessed: Feb. 16, 2023. [Online]. Available: https://europepmc.org/article/med/19123380
  49. Özer Z., Gök S., Altan H., and Severcan F. Concentration-based measurement studies of L-tryptophan using terahertz time-domain spectroscopy (THz-TDS). Appl. Spectrosc., 68 (1), 95–100 (2014). doi: 10.1366/13-07165
  50. Reale R., English N. J., Marracino P., Liberti M., and Apollonio F. Dipolar response and hydrogen-bond kinetics in liquid water in square-wave time-varying electric fields. Mol. Phys., 112 (14), 1870–1878 (2014). doi: 10.1080/00268976.2013.867081
  51. Mancini T., Mosetti R., Marcelli A., Petrarca M., Lupi S., and D’Arco A. Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status. Radiation, 2 (1), 100–123 (2022). doi: 10.3390/radiation2010008
  52. Sanders T. J., Allen J. L., Plathe R., Horvat J., and Lewis R. A. The 3, 5, 6, and 7 THz resonances of α-glycine. Spectrochim. Acta. Part A – Mol. Biomol. Spectrosc., 253, 119544 (2021). doi: 10.1016/j.saa.2021.119544
  53. Panicker C. Y., Varghese H. T., Mary Y. S. A., Kumar G. K., Harikumar B., Raju K., Devi P. S. A. Vibrational spectroscopic study of glycine molecule. Mater. Sci. Res. India, 7 (1), 239–243 (2010). doi: 10.13005/msri/070133
  54. Zhang F., Wang H. W., Tominaga K., and Hayashi M. Intramolecular vibrations in low-frequency normal modes of amino acids: L -alanine in the neat solid state. J. Phys. Chem. A, 119 (12), 3008–3022 (2015). doi: 10.1021/jp512164y
  55. Iglesias-Groth S. and Cataldo F. Far-infrared spectroscopy of proteinogenic and other less common amino acids. Mon. Not. R. Astron. Soc., 478 (3), 3430–3437 (2018). doi: 10.1093/MNRAS/STY1226
  56. Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol., 74 (3–5), 141–173 (2000), doi: 10.1016/S0079-6107(00)00021-3
  57. English N. J. Molecular simulation of external electric fields on the crystal state: a perspective. Crystals, 11 (11), 1405 (2021). doi: 10.3390/cryst11111405

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies