Regularities of Induction and Growth of Tumors in Mice upon Irradiation of Ehrlich Carcinoma Cells ex vivo and in vivo with a Pencil Scanning Beam of Protons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The patterns of tumor induction and growth in mice were studied under single irradiation with a proton beam at doses of 30, 60, and 80 Gy of Ehrlich carcinoma cells under ex vivo and in vivo conditions. It was shown that the frequency of tumor induction after proton irradiation of Ehrlich carcinoma cells ex vivo at a dose of 30 Gy was lower than after irradiation in vivo, and at doses of 60 Gy and 80 Gy, the number of tumors was the same. The temporal patterns of tumor occurrence during irradiation of Ehrlich carcinoma cells ex vivo differed significantly from in vivo irradiation: the period of time when the appearance of new tumors was recorded in the ex vivo groups was the same for all doses, and during in vivo irradiation it had a dose dependence. The growth rate of Ehrlich carcinoma tumors after cell irradiation ex vivo and in vivo did not depend on the dose, the method of irradiation, or the time of their occurrence, but was significantly lower than in the control group. The results obtained are of interest for understanding the mechanisms of manifestation of potentially lethal damage to tumor cells, the role of the tumor microenvironment in the induction of relapses and ways to overcome them using the potential of proton therapy, as well as for the development of biomedical models to search for optimal targets for hadron cancer therapy.

About the authors

O. M Rozanova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: rozanova.iteb@gmail.com
Institutskaya st. 3, Pushchino, Moscow Region, 142290, Russia

E. N Smirnova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Institutskaya st. 3, Pushchino, Moscow Region, 142290, Russia

T. A Belyakova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Email: belyakovata@lebedev.ru
Mira st. 1H, Protvino, Moscow Region, 142281, Russia

N. S Strelnikova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Mira st. 1H, Protvino, Moscow Region, 142281, Russia

A. V Smirnov

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Mira st. 1H, Protvino, Moscow Region, 142281, Russia

References

  1. Blanchard P., Gunn G. B., Lin A., Foote R. L., Lee N. Y.,and Frank S. J., Proton therapy for head and neck cancers. Semin. Radiat. Oncol., 28 (1), 53–63 (2018).
  2. Baliga S., Gandola L., Timmermann B., Gail H., Padovani L., Janssens G. O., and Yock T. I. Brain tumors: Medulloblastoma, ATRT, ependymoma. Pediatric Blood & Cancer, 68 (S2) (2020). doi: 10.1002/pbc.28395
  3. Tommasino F. and Durante M. Proton radiobiology. Cancers (Basel), 7, 353–381 (2015).
  4. Bortfeld T., Paganetti H., and Kooy H. M. Proton Beam Radiotherapy – The State of the Art. Med. Phys., 32 (6), 2048–2049 (2005).
  5. Warren J., Noone A., Stevens J., Wu X.-Ch.,Hsieh M.-Ch., Mumphrey B. J., Schmidt R., Coyle L., Shields R., and Mariotto A. B. The Utility of Pathology Reports to Identify Persons With Cancer Recurrence. Med. Care 60 (1), 44–49 (2022). doi: 10.1097/MLR.0000000000001669
  6. Santos A., Penfold S., Gorayski P., and Le H. The Roleof Hypofractionation in Proton Therapy. Cancers (Basel) 14 (9), (2022). doi: 10.3390/cancers14092271
  7. Kubes J., Vondracek V., Andrlik M., Navrátil M., Sláviková S., Vítek P., Rosina J., Abrahámová J., Prausová J., Grebenyuk A., and Dědečková K. Extreme hypofractionated proton radiotherapy for prostate cancer using pencil beam scanning: Dosimetry, acute toxicity and preliminary results. J. Med. Imaging Radiat. Oncol. 63, 829–835 (2019). doi: 10.1111/1754-9485.12947
  8. Гриценко С. Е., Удалов Ю. Д. и Киселев В. А. Оптимизация метода протонной лучевой терапии у больных раком предстательной железы, получающих лечение в ФГБУ ФНКЦРИО ФМБА России. В сб. матер. VI Всероссийского научно-образовательного конгресса «Онкорадиология, лучевая диагностика и терапия» (М., 2023), сс. 25–26.
  9. Kim T. H., Park J.-W., Kim B. H., Oh E. S., Youn S. H.,Moon S. H., Kim S. S., Woo S. M., Koh Y.-H., Lee W. J., and Kim D. Y., Phase II Study of Hypofractionated Proton Beam Therapy for Hepatocellular Carcinoma. Front. Oncol. 10, 542 (2020). DOI: 10.3389/ fonc.2020.00542
  10. Kharod S. M., Nichols R. Ch., Henderson R. H., Morris Ch. G., Pham D. C., Seeram V. K., Jones L. M., Antonio-Miranda M., Huh S., Li Z., and Hoppe B. S. Image-guided hypofractionated double-scattering proton therapy in the management of centrally-located earlystage non-small cell lung cancer. Acta Oncol. 59 (10), 1164–1170 (2020). doi: 10.1080/0284186X. 2020.1759821
  11. Di Maggio F. M., Minafra L., Forte G. I., Cammarata F. P.,Lio D., Messa C., Gilardi M. C., and Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J. Inflamm. (Lond.), 12, 14 (2015). doi: 10.1186/s12950-0150058-3
  12. Балакин В. Е., Белякова Т. А., Розанова О. М.,Смирнова Е. Н., Шемяков А. Е. и Стрельникова Н. С. Использование модели солидной формы асцитной карциномы Эрлиха у мышей для исследования ранних и отдаленных последствий гипофракционированного протонного облучения. Биомедицина, 17 (3E), 127–132 (2021). doi: 10.33647/2713-042817-3E-127-132
  13. Olivares-Urbano M., Grinan-Lison C., Marchal J.,and Núñez M I. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells. 9 (7), 1651 (2020). doi: 10.3390/cells9071651
  14. Skvortsov S., Debbage P., Lukas P., and Skvortsova I.Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin. Cancer Biol., 31, 36–42 (2015).
  15. Матчук О. Н., Замулаева И. А., Селиванова Е. И.,Мкртчян Л. С., и Крикунова Л. И. Радиорезистентность опухолевых стволовых клеток – одна из ключевых проблем радиационной онкологии. Исследования и практика в медицине, 6 (1), 189 (2019).
  16. Zhang X., Lin S. H., Fang B., Gillin M., Mohan R.,and Chang J. Y. Therapy-resistant cancer stem cells have differing sensitivity to photon versus proton beam radiation. J. Thorac Oncol., 8 (12), 1484–1491 (2013).
  17. Matchuk O. N., Yakimova A. O., Saburov V. O., Koryakin S. N., Ivanov S. A., and Zamulaeva I. A. Effects of Combined Action of Neutron and Proton Radiation on the Pool of Breast Cancer Stem Cells and Expression of Stemness Genes In Vitro. Bull. Exp. Biol. Med., 173 (6), 749–753 (2022).
  18. Dini V., Belli M., and Tabocchini M. A. Targeting cancer stem cells: protons versus photons. Br. J. Radiol., 93 (1107), 20190225 (2020). doi: 10.1259/bjr.20190225
  19. Smith J. A., van den Broek F. A., Martorell J. C., Hackbarth H., Ruksenas O., and Zeller W. Principles and practice in ethical review of animal experiments across Europe: summary of the report of a FELASA working group on ethical evaluation of animal experiments. Lab. Anim., 41 (2), 143–160 (2007). DOI: 10.1258/ 002367707780378212
  20. Mishra S., Tamta A. K., Sarikhani M., Desingu P. A.,Kizkekra Sh. M., Pandit A. Sh., Kumar Sh., Khan D., Raghavan S. C., and Sundaresan N. R. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci. Rep., 8 (1), 5599 (2018). doi: 10.1038/s41598-018-23669-9
  21. Балакин В. Е., Шемяков А. Е., Заичкина С. И., Розанова О. М., Смирнова Е. Н., Романченко С. П., Сорокина С. С., Стрельникова Н. С. Гипофpакциониpованное облучение cолидной фоpмы аcцитной каpциномы Эpлиxа у мышей тонким cканиpующим пучком пpотонов. Биофизика, 61 (4), 808–812 (2016).
  22. Балакин В. Е., Шемяков А. Е., Заичкина C. И.,Pозанова О. М., Cмиpнова Е. Н., Pоманченко C. П., Cоpокина C. C., Cтpельникова Н. C. Отдаленныe лучевыe поcледcтвия поcле гипофpакциониpованного облучения пpотонами cолидной каpциномы Эpлиxа у мышей. Биофизика, 62 (1), 161–167 (2017).
  23. Sorensen B., Horsman M., Alsner J., Overgaard J., Durante M., Scholz M., Friedrich Th., and Bassler N. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncologica, 54(9), 1623-1630 (2015). doi: 10.3109/0284186X.2015.1069890
  24. Yang L., Shi P., Zhao G., Xu J., Peng W., Zhang J., Zhang G., Wang X., Dong Zh., Chen F., Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 5 (1), 8 (2020). doi: 10.1038/s41392-020-0110-5
  25. Замулаева И. А. Радиорезистентность популяцииопухолевых стволовых клеток: механизмы, способы преодоления и клиническое значение. В сб. матер. Междунар. конф. «Актуальные проблемы радиационной биологии. К 60-летию создания Научного совета РАН по радиобиологии» (Дубна, 2022), сс. 35–38.
  26. Замулаева И. А., Матчук О. Н., Селиванова Е. И.,Андреев В. Г., Липунов Н. М., Макаренко С. А., Жаворонков Л. П., Саенко А. С. Увеличение количества опухолевых стволовых клеток под воздействием редкоионизирующего излучения. Радиац. биология. Радиоэкология, 54 (3), 256–264 (2014). doi: 10.7868/S0869803114030187
  27. Quintana E., Shackleton M., Sabel M. S., Fullen D. R., Johnson T. M., and Morrison S. J. Efficient tumour formation by single human melanoma cells. Nature, 456 (7222), 593–598 (2008).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies