Hafnium Complexes as Dose Enhancement Agents for Photon Capture Therapy and as Contrast Agents for Radiotherapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hafnium is a promising element as contrast agent for diagnostic and therapeutic radiology. Currently there is no suitable hafnium drugs with renal excretion, which can be used in radiology. In this work two new hafnium complexes with nitrilotriacetic acid (Hf-NTA) and 1,2-diaminocyclohexanetetraacetic acid (Hf-CDTA) were synthesized and studied for acute toxicity and biodistribution. Inorganic chemistry methods were used for Hf-NTA and Hf-CDTA synthesis. Acute toxicity was studied in female mice C57Bl/6. Biodistribution and contrast properties studies of Hf-CDTA were made in vivo with micro-CT. Mice with transplanted subcutaneous mammary adenocarcinoma Ca755 were used for the study. Median lethal dose (LD50) of Hf-CDTA was assessed as 408 ± 64 mg Hf/kg and of Hf-NTA less than 120 mg Hf/kg. CT imaging of mice intravenously injected with Hf-CDTA confirmed its renal excretion and contrast capability. CT imaging of tumor region with single intratumoral administration of Hf-CDTA showed promising hafnium concentration and retention in tumor for use in contrast enhanced radiotherapy. Hf-CDTA showed acceptable toxicity and biodistribution in mice with subcutaneous tumors for biomedical application in radiology and radiotherapy. For diagnostic clinical application Hf-CDTA formulation must be improved to increase water solubility and decrease toxicity. Hf-NTA appeared to be unacceptably toxic for radiological application.

About the authors

A. A Lipengolts

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University (Moscow Engineering Physics Institute); N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Kashirskoye Shosse 24, Moscow, 115478, Russia; Kashirskoe shosse 31, Moscow, 115409, Russia; Leninsky prosp. 31, Moscow, 119991, Russia

V. A Skribitsky

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University (Moscow Engineering Physics Institute)

Kashirskoye Shosse 24, Moscow, 115478, Russia; Kashirskoe shosse 31, Moscow, 115409, Russia

Yu. A Finogenova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; Peoples' Friendship University of Russia named after Patrice Lumumba

Email: b-f.finogenova@yandex.ru
Kashirskoye Shosse 24, Moscow, 115478, Russia; ul. Miklukho-Maklaya 6, Moscow, 117198, Russia

A. T Shulyak

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Peoples' Friendship University of Russia named after Patrice Lumumba; MIREA – Russian Technological University; Leninsky prosp. 31, Moscow, 119991, Russia

ul. Miklukho-Maklaya 6, Moscow, 117198, Russia; prosp. Vernadskogo 78, Moscow, 119454, Russia

M. A Abakumov

N.I. Pirogov Russian National Research Medical University

ul. Ostrovityanova 1, Moscow, 117997, Russia

A. Yu Bykov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Leninsky prosp. 31, Moscow, 119991, Russia

E. Yu Grigorieva

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Kashirskoye Shosse 24, Moscow, 115478, Russia

A. V Smirnova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; Moscow Clinical Research Center named after A. S. Loginov, Moscow Healthcare Department

Kashirskoye Shosse 24, Moscow, 115478, Russia; Shosse Entuziastov 86, Moscow, 111123, Russia

K. E Shpakova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University (Moscow Engineering Physics Institute)

Kashirskoye Shosse 24, Moscow, 115478, Russia; Kashirskoe shosse 31, Moscow, 115409, Russia

K. Yu Zhizhin

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; MIREA – Russian Technological University

Leninsky prosp. 31, Moscow, 119991, Russia; prosp. Vernadskogo 78, Moscow, 119454, Russia

References

  1. Kulakov V. N., Lipengol'ts A. A., Grigor'eva E. Y., andShimanovskii N. L. Pharmaceuticals for binary radiotherapy and their use for treatment of malignancies. Pharm. Chem. J., 50 (6), 388–393 (2016). doi: 10.1007/s11094-016-1457-3
  2. Kulakov V. N., Lipengol’ts A. A., and Shimanovskii N. L., Pharmaceuticals for binary radiotherapy. Russ. J. Gen. Chem., 83, 2559–2564 (2013). DOI: 10.1134/ S1070363213120542
  3. Sheino I. N., Izhevskij P. V., Lipengolts A. A.,Kulakov V. N., Wagner A. A., Sukhikh E. S., and Varlachev V. F. Development of binary technologies of radiotherapy of malignant neoplasms: condition and problems. Bull. Siber. Med., 16 (3), 192–209 (2017). doi: 10.20538/1682-0363-2017-3-192-209
  4. Липенгольц А. А., Арнопольская А. М., Шейно И. Н.и Кулаков В. Н. Экспериментальное подтверждение противоопухолевой эффективности нейтронзахватной терапии с гадолинием. Онкологический журн., 3 (2), 63–70 (2020). doi: 10.37174/2587-75932020-3-2-63-70
  5. Rose J. H., Norman A., Ingram M., Aoki C., SolbergT., and Mesa A. First radiotherapy of human metastatic brain tumors delivered by a computerized tomography scanner (CTRx). Int. J. Radiat. Oncol. Biol. Phys., 45 (5), 1127–1132 (1999). doi: 10.1016/S0360-3016(99)00347-8
  6. Adam J.-F., Vautrin M., Obeid L., Tessier A., Prezado Y., Renier M., Nemoz Ch., Brochard Th., Bravin A., Bas J., Elleaume H., Berkvens P., Balosso J., and Estève F. Contrast-enhanced Synchrotron Stereotactic Radiotherapy Clinical Trials from a Medical Physicist Point of View. Int. J. Radiat. Oncol. Biol. Phys., 90, S16–S17 (2014). doi: 10.1016/j.ijrobp. 2014.05.103.
  7. Lux F., Tran V. L., Thomas E., Dufort S., Rossetti F.,Martini M., Truillet C., Doussineau T., Bort G., Denat F., Boschetti F., Angelovski G., Detappe A., Crémillieux Y., Mignet N., Doan B. T., Larrat B., Meriaux S., Barbier E., Roux S., Fries P., Müller A., Abadjian M. C., Anderson C., Canet-Soulas E., Bouziotis P., Barberi-Heyob M., Frochot C., Verry C., Balosso J., Evans M., Sidi-Boumedine J., Janier M., Butterworth K., McMahon S., Prise K., Aloy M. T., Ardail D., Rodriguez-Lafrasse C., Porcel E., Lacombe S., Berbeco R., Allouch A., Perfettini J. L., Chargari C., Deutsch E., Le Duc G., and Tillement O. AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br. J. Radiol., 92 (1093), 20180365 (2019). doi: 10.1259/bjr.20180365
  8. Hainfeld J. F., Ridwan S. M., Stanishevskiy Y.,Panchal R., Slatkin D. N., and Smilowitz H. M. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci. Rep., 9, 4505 (2019).
  9. Hainfeld J. F., Smilowitz H. M., O'Connor M. J., Dilmanian F. A., and Slatkin D. N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond.), 8 (10), 1601–1609 (2013). doi: 10.2217/nnm.12.165
  10. Norman A., Ingram M., Skillen R. G., Freshwater D.B., Iwamoto K. S., and Solberg T. X-ray phototherapy for canine brain masses. Radiat. Oncol. Investig., 5 (1), 8–14 (1997). doi: 10.1002/(SICI)1520-6823(1997)5:1<8::AID-ROI2>3.0.CO;2-1
  11. X-Ray Mass Attenuation Coefficients: NIST Standard Reference Database 126. URL: https://www.nist.gov/ pml/x-ray-mass-attenuation-coefficients (Дата обращения 17.07.2023).
  12. Bonvalot S., Rutkowski P. L., Thariat J., Carrère S.,Ducassou A., Sunyach M. P., Agoston P., Hong A., Mervoyer A., Rastrelli M., Moreno V., Li R. K., Tiangco B., Herraez A. C., Gronchi A., Mangel L., SyOrtinT., Hohenberger P., de Baère T., Le Cesne A., Helfre S., Saada-Bouzid E., Borkowska A., Anghel R., Co A., Gebhart M., Kantor G., Montero A., Loong H. H., Vergés R., Lapeire L., Dema S., Kacso G., Austen L., Moureau-Zabotto L., Servois V., Wardelmann E., Terrier P., Lazar A. J., Bovée J. V. M. G., Le Péchoux C., and Papai Z. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 20 (8), 1148–1159 (2019). doi: 10.1016/S14702045(19)30326-2
  13. Shulyak A. T., Bortnikov E. O., Kubasov A. S., Selivanov N. A., Lipengolts A. A., Zhdanov A. P., Bykov A. Y., Zhizhin K. Y., and Kuznetsov N. T. Synthesis of Hafnium(IV) Polyaminoacetates. Molecules (Basel, Switzerland), 26 (12), Art. 3725 (2021). doi: 10.3390/molecules26123725
  14. Lipengolts A. A., Cherepanov A. A., Kulakov V. N.,Grigorieva E. Y., Sheino I. N., and Klimanov V. A. Antitumor efficacy of extracellular complexes with gadolinium in Binary Radiotherapy. Appl. Radiat. Isot., 106, 233–236 (2015). doi: 10.1016/j.apradiso.2015.07.051
  15. Lipengolts A. A., Budaeva J. A., Blaickner M., Cherepanov A. A., Menkov M. A., Kulakov V. N., and Grigorieva, E. Iodine quantification with computed tomography for the purpose of dose assessment in contrast enhanced radiotherapy. Bull. Russ. State Med. Univ., (6), 16–19 (2016). doi: 10.24075/brsmu.2016-06-03
  16. Lipengol’ts A. A., Cherepanov A. A., Kulakov V. N.,Grigor’eva E. Y., Merkulova I. B., and Sheino I. N. Comparison of the antitumor efficacy of bismuth and gadolinium as dose-enhancing agents in formulations for photon capture therapy. Pharm. Chem., 51, 783– 786 (2017). doi: 10.1007/s11094-017-1693-1
  17. Hoffmann C., Calugaru V., Borcoman E., Moreno V.,Calvo E., Liem X., Salas S., Doger B., Jouffroy Th., Mirabel X., Rodriguez J., Chilles A., Bernois K., Dimitriu M., Fakhry N., and Wong Hee Kam S. Phase I dose-escalation study of NBTXR3 activated by intensity-modulated radiation therapy in elderly patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. Eur. J. Cancer, 146, 135–144 (2021). doi: 10.1016/j.ejca.2021.01.007
  18. Bonvalot S., Rutkowski P. L., Thariat J., Carrère S.,Ducassou A., Sunyach M. P., Agoston P., Hong A. M., Mervoyer A., Rastrelli M., Moreno V., Li R. K., Tiangco B. J., Herráez A. C., Gronchi A., Sy-Ortin T., Hohenberger P., de Baère T., Cesne A. L., Helfre S., Saada-Bouzid E., Anghel R. M., Kantor G., Montero A., Loong H. H, Vergés R., Kacso G., Austen L., Servois V. F., Wardelmann E., Dimitriu M., Said P., Lazar A. J., Bovée J. V. M. G., Péchoux C. L., and Pápai Z. Final Safety and Health-Related Quality of LIfe Results of the Phase 2/3 Act.In.Sarc Study With Preoperative NBTXR3 Plus Radiation Therapy Versus Radiation Therapy in Locally Advanced Soft-Tissue Sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 114 (3), 422– 432 (2022). doi: 10.1016/j.ijrobp.2022.07.001
  19. Lipengolts A. A., Vorobyeva E. S., Cherepanov A. A.,Abakumov M. A., Abakumova T. O., Smirnova A. V., Finogenova Yu. A., Grigorieva E. Yu., Sheino I. N., and Kulakov V. N. Bull. Russ. State Med. Univ., 5, 60– 64 (2018). doi: 10.24075/brsmu.2018.062

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies