Content of Nitrogen Monoxide and Copper in the Hippocampus of a Rat Model of Short-Term Cerebral Ischemia Followed by Reperfusion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electron paramagnetic resonance (EPR) spectroscopy was used to determine the content of nitric oxide (NO) and copper in the hippocampus of healthy rats and rat models of ischemia. The rat model of ischemia was established via both carotid arteries ligation and ligation of the carotid arteries with subsequent withdrawal of a 3 ml of blood from the common carotid artery. The EPR signals of the (DETC)2-Fe2+-NO and Cu(DETC)2 complexes were recorded. The NO level in the hippocampus showed a significantly drop by an average of 28% one day after modeling ischemic stroke caused by carotid artery ligation and by 56% in the rat model of ischemia established via ligation of the carotid arteries with subsequent withdrawal of a 3 ml of blood from the common carotid artery. The copper content decreased significantly in the hippocampus by an average of 20% one day after modeling ischemia by ligation of the carotid arteries and our findings indicate that the copper content tends to decrease in the rat model of ischemia established via ligation of the carotid arteries with subsequent withdrawal of blood. High variability couldn’t tell us if there was a significant difference between groups, though. Thus, brain hypoxia of rats subjected to carotid arteries ligation is accompanied not only by a decrease in NO production in the hippocampus, but also by signs of a weakening of the antioxidant system, thus, worsening conditions for the maintenance of homeostasis.

About the authors

Kh. L Gainutdinov

E.K. Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences; Kazan (Volga Region) Federal University

Email: kh_gainutdinov@mail.ru
Sibirsky tract 10/7, Kazan, Tatarstan, 420029, Russia; Kremlevskaya ul. 18, Kazan, 420008, Russia

V. V Andrianov

E.K. Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences; Kazan (Volga Region) Federal University

Sibirsky tract 10/7, Kazan, Tatarstan, 420029, Russia; Kremlevskaya ul. 18, Kazan, 420008, Russia

G. G Yafarova

E.K. Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences; Kazan (Volga Region) Federal University

Sibirsky tract 10/7, Kazan, Tatarstan, 420029, Russia; Kremlevskaya ul. 18, Kazan, 420008, Russia

L. V Bazan

E.K. Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences

Sibirsky tract 10/7, Kazan, Tatarstan, 420029 Russia

T. K Bogodvid

Kazan (Volga Region) Federal University; Volga Region State University of Physical Culture, Sport and Tourism

Kremlevskaya ul. 18, Kazan, 420008, Russia; Derevnya Universiady 35, Kazan, 420010, Russia

V. S Iyudin

E.K. Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences

Sibirsky tract 10/7, Kazan, Tatarstan, 420029, Russia

T. A Filipovich

Brain Center, Institute of Physiology, National Academy of Sciences of Belarus

Akademicheskaya ul. 28, Minsk, 220072, Belarus

Yu. G Shanko

Brain Center, Institute of Physiology, National Academy of Sciences of Belarus

Akademicheskaya ul. 28, Minsk, 220072, Belarus

Yu. P Tokalchik

Brain Center, Institute of Physiology, National Academy of Sciences of Belarus

Akademicheskaya ul. 28, Minsk, 220072, Belarus

V. A Kulchitsky

Brain Center, Institute of Physiology, National Academy of Sciences of Belarus

Akademicheskaya ul. 28, Minsk, 220072, Belarus

References

  1. Ванин А.Ф. Динитрозильные комплексы железа и S-нитрозотиолы – две возможные формы стабилизации и транспорта оксида азота в биосистемах. Биохимия, 63 (7), 924–938 (1998).
  2. Ситдикова Г. Ф. и Зефиров А. Л. Газообразные посредники в нервной системе. Рос. физиол. журн. им. И.М. Сеченова, 92, 872–882 (2006).
  3. Steinert J. R., Chernova T., and Forsythe I. D. Nitricoxide signaling in brain function, dysfunction, and dementia. Neuroscientist, 16 (4), 435–452 (2010). doi: 10.1177/1073858410366481
  4. Ignarro L. J., Cirino G., Casini A., and Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol., 34 (6), 879–886 (1999). doi: 10.1097/00005344-19991200000016
  5. Lakomkin V. L., Vanin A. F., Timoshin A. A.,KapelkoV. I., and Chazov E. I. Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiolcontaining ligands in conscious normotensive and hypertensive rats. Nitric Oxide: Biology and Chemistry, 16 (4), 413–418 (2007).
  6. Thomas D. D., Ridnour L. A., Isenberg J. S., FloresSantana W., Switzer C. H., Donzelli S., Hussain P., Vecoli C., Paolocci N., Ambs S., Colton C. A., Harris C. C., Roberts D. D., and Wink D. A. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med., 45 18–31 (2008).
  7. Vanin A. F. Dinitrosyl iron complexes with thiol-containing ligands as a base for new-generation drugs (Review). Open Conf. Proc. J., 4 31–37 (2013).
  8. Hardingham N., Dachtler J., and Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front. Cell. Neurosci., 7, 190 (2013). doi: 10.3389/fncel.2013.00190
  9. Pacher P., Beckman J. S., and Liaudet L. Nitric oxideand peroxynitrite in health and disease. Physiol. Rev., 87, 315–427 (2007).
  10. Terpolilli N. A., Moskowitz M. A., and Plesnila N. Nitric oxide: considerations for the treatment of ischemic stroke. J. Cereb. Blood Flow Metab., 32 (7), 1332–1346 (2012).
  11. Bolanos J. P. and Almeida A. Roles of nitric oxide inbrain hypoxia-ischemia. Biochim. Biophys. Acta, 1411 (2–3), 415–436 (1999).
  12. Calabrese V., Cornelius C., Rizzarelli E., Owen J. B.,Dinkova-Kostova A. T., and Butterfield D. A. Nitric oxide in cell survival: a janus molecule. Antioxidants and Redox Signaling, 11, 2717–2739 (2009).
  13. Forstermann U. and Sessa W. C., Nitric oxide synthases: regulation and function. Eur. Heart J., 33 829–837 (2012). doi: 10.1093/eurheartj/ehr304
  14. Реутов В. П., Охотин В. Е., Шуклин А. В., Сороки-на Е. Г., Косицын Н. С. и Гурин В. Н. Оксид азота и цикл в миокарде: молекулярные, биохимические и физиологические аспекты. Успехи физиол. наук, 38 (4), 39–58 (2007).
  15. Sparacino-Watkins C. E., Tejero J., Sun B., Gauthier M. C., Thomas J., Ragireddy V., Merchant B. A., Wang J., Azarov I., Basu P., and Gladwin M. T. Nitrite Reductase and Nitric-oxide Synthase Activity of the Mitochondrial Molybdopterin Enzymes mARC1 and mARC2. J. Biol. Chem., 289 (15), 10345–10358 (2014). doi: 10.1074/jbc.M114.555177
  16. Borodulin R. R., Kubrina L. N., Mikoyan V. D., Pol-torakov A. P., Shvydkiy V. О., Burbaev D. Sh., Serezhenkov V. A., Yakhontova E. R., and Vanin A. F. Dinitrosyl iron complexes with glutathione as NO and NO-donors. Nitric Oxide, 29, 4–16 (2013).
  17. Vanin A. F. Dinitrosyl iron complexes with thiol-con-taining ligands as a “working form” of endogenous nitric oxide. Nitric Oxide, 54, 15–29 (2016).
  18. Ванин А. Ф. Динитрозильные комплексы железа стиолсодержащими лигандами могут как доноры катионов нитрозония подавлять вирусные инфекции (гипотеза). Биофизика, 65 (4), 818–823 (2020).
  19. Csonka C., Pali T., Bencsik P., Gorbe A., Ferdinandy P., and Csont T. Measurement of NO in biological samples. Br. J. Pharmacol., 172, 1620–1632 (2015).
  20. Vanin A. F., Huisman A., and Van Faassenm E. E. IronDithiocarbamate as Spin Trap for Nitric Oxide Detection: Pitfalls and Successes. Methods Enzymol., 359, 27–42 (2003).
  21. Hogg N. Detection of nitric oxide by electron paramagnetic resonance spectroscopy. Free Radic. Biol. Med. 49, 122–129 (2010).
  22. Vanin A. F., Mordvintcev P. I., and Kleschyov A. L.Appearance of nitrogen oxide in animal tissues in vivo. Studia Biophysica, 102, 135–143 (1984).
  23. Fukai T. and Ushio-Fukai M. Superoxide dismutases:role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 15 (6), 1583–1606 (2011). doi: 10.1089/ars.2011.3999
  24. Roch M., Messlinger K., Kulchitsky V. A., Ti-chonovich O. G., Azev O. A., and Koulchitsky S. V. Ongoing activity in trigeminal wide-dynamic range neurons is driven from the periphery. Neuroscience 150 (3), 681–691 (2007).
  25. Kulchitsky V., Semenik T., Kaliadzich Z., AndrianovaT., and Tsishkevich K., The analysis of chemosensitive structures contribution to obstructive sleep apnea development. Clin. Neurophysiol., 125, S330–S331 (2014). doi: 10.1016/S1388-2457(14)51089-9
  26. Shanko Y., Zamaro A., Takalchik S. Y., Koulchitsky S.,Pashkevich S., Panahova E., Navitskaya V., Dosina M., Denisov A., Bushuk S., and Kulchitsky V. Mechanisms of Neural Network Structures Recovery in Brain Trauma Biomed. J. Sci. Tech. Res., 7 (5), MS.ID.001567 (2018).
  27. Deryagin O. G., Gavrilova S. A., Gainutdinov Kh. L.,Golubeva A. V., Andrianov V. V., Yafarova G. G., Buravkov S. V., and Koshelev V. B., Molecular bases of brain preconditioning. Front. Neurosci., 11, 427 (2017). doi: 10.3389/fnins.2017.00427
  28. Микоян В. Д., Кубрина Л. Н. и Ванин А. Ф. Оксидазота образуется через L-аргинин зависимый путь в мозге мышей in vivo. Биофизика, 39, 915–918 (1994).
  29. Гайнутдинов Х. Л., Андрианов В. В., Июдин В. С.,Юртаева С. В., Яфарова Г. Г., Файзуллина Р. И. и Ситдиков Ф. Г. Исследование методом ЭПР спектроскопии интенсивности продукции оксида азота в организме крыс при гипокинезии. Биофизика, 58 (2), 276–280 (2013).
  30. Ismailova A. I., Gnezdilov O. I., Muranova L. N.,Obynochny A. A., Andrianov V. V., Gainutdinov Kh. L., Nasyrova A. G., Nigmatullina R. R., Rahmatullina F. F., and Zefirov A. L. ESR Study of the Nitric Oxide Production in Tissues of Animals under the External Influence on the Functioning of the Cardiovascular and Nervous Systems. Appl. Magn. Res., 28, 421–430 (2005).
  31. van Faassen E. E., Koeners M. P., Joles J. A., and Vanin A. F. Detection of basal NO production in rat tissues using iron–dithiocarbamate complexes. Nitric Oxide, 18, 279–286 (2008).
  32. Gainutdinov Kh. L., Gavrilova S. A., Iyudin V. S., Golubeva A. V., Davydova M. P., Jafarova G. G., Andrianov V. V., and Koshelev V. B. EPR study of the intensity of the nitric oxide production in rat brain after ischemic stroke. Appl. Magn. Res., 40 (3), 267–278 (2011).
  33. Donnan G. A., Fisher M., Macieod M., andDavis S. M. Stroke. Lancet, 371, 1612–1623 (2008). doi: 10.1016/S0140-6736(08)60694-7
  34. Wierónska J. M., Ciéslik P., and Kalinowski L. NitricOxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules, 11 (8), 1097 (2021). doi: 10.3390/biom11081097
  35. Chen Z. Q., Mou R. T., Feng D. X., Wang Z., andChen G. The role of nitric oxide in stroke. Med. Gas. Res., 7 (3), 194–203 (2017).
  36. Doyle K. P., Simon R. P., and Stenzel-Poore M. P.Mechanisms of ischemic brain damage. Neurophrmacology, 55, 310–318 (2008).
  37. Liu L. X., Yang Y. J., Jia Y. J. A model of hypoxic-ischemic brain damage in the neonatal rats. Bull. Hunan Med. University, 28 (2), 133–136 (2003).
  38. Garry P. S., Ezra M., Rowland M. J., Westbrook J., andPattinson K. T. S. The role of the nitric oxide pathway in brain injury and its treatment – From bench to bedside. Experim. Neurol., 263, 235–243 (2015).
  39. Godinez-Rubi M., Rojas-Mayorquin A. E., and Ortuno-Sahagun D. Nitric oxide donorsas neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxid. Med. Cell. Longevity, 2013, 297357, (2013). doi: 10.1155/2013/297357
  40. Дерягин О. Г., Гаврилова С. А., Буравков С. В., Андрианов В. В., Яфарова Г. Г., Гайнутдинов Х. Л. и Кошелев В. Б. Роль АТФ-чувствительных калиевых каналов и оксида азота в защитном эффекте прекондиционирования мозга. Журн. неврологии и психиатрии им. С.С. Корсакова, 116 (8), 17–23 (2016). doi: 10.17116/jnevro20161168217-23
  41. Andrianov V. V., Pashkevich S. G., Yafarova G. G.,Denisov A. A., Iyudin V. S., Bogodvid T. K., Dosina M. O., Kulchitsky V. A., and Gainutdinov Kh. L. Changes of nitric oxide content in the rat hippocampus, heart and liver in acute phase of ischemia. Appl. Magn. Reson., 47 (9), 965–976 (2016).
  42. Wu L., Xiong X., Wu X., Ye Y., Jian Z., Zhi Z., andGu L. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front. Mol. Neurosci., 13, 28 (2020). doi: 10.3389/fnmol.2020.00028
  43. Banci L., Bertini I., Ciofi-Baffoni S., Kozyreva T., Zovo K., and Palumaa P. Affinity gradients drive copper to cellular destinations. Nature, 465, 645–648 (2010).
  44. Festa R. A. and Thiele D. J. Copper: an essential metalin biology. Curr. Biol., 21 (21), R877–R883 (2011).
  45. Miller A.-F. Superoxide dismutases: ancient enzymesand new insights. FEBS Lett., 586, 585–595 (2012).
  46. Sheng Y., Abreu I. A., Cabelli D. E., Maroney M. J.,Miller A.-F., Teixeira M., and Valentine J. S. Superoxide dismutases and superoxide reductases. Chem. Rev., 114, 3854−3918 (2014). doi: 10.1021/cr4005296
  47. Samdani A. F., Dawson T. M., and Dawson V. L. Nitricoxide synthase in models of focal ischemia. Stroke, 28, 1283–1288 (1997).
  48. Iadecola C., Zhang F., Casey R., Nagayama M., andRoss M. E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci., 17, 9157–9164 (1997).
  49. Sato S., Tominaga T., Ohnishi T., and Ohnishi S. T.,Electron paramagnetic resonance study on nitric oxide production during brain focal ischemia and reperfusion in the rat. Brain Res., 647 (1), 91–96 (1994).
  50. Fadiukova O. E., Alekseev A. A., Bashkatova V. G.,Tolordava I. A., Kuzenkov V. S., Mikoian V. D., Vanin A. F., Koshelev V. B., and Raevskiĭ K. S. Semax prevents elevation of nitric oxide generation caused by incomplete global ischemia in the rat brain. Eksp. Klin. Farmakol., 64 (2), 31–34 (2001).
  51. Willmot M., Gray L., Gibson C., Murphy S., andBath P. M. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide, 12, 141–149 (2005).
  52. Jung K. H., Chu K., Ko S. Y., Lee S. T., Sinn D. I.,Park D. K., Kim J. M., Song E. C., Kim M., and Roh J. K. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke, 37, 2744–2750 (2006).
  53. Evgenov O. V., Pacher P., Schmidt P. M., Haskó G., Harald H., Schmidt H. W., and Stasch J.-P. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nature Rev. Drug Discov., 5, 755–768 (2006). doi: 10.1038/nrd2038
  54. Prajapati K. D., Devarakonda C. B., Joshi A. R., Sharma S. S., and Roy N. Role of nitric oxide synthases in cerebral ischemia. Curr. Res. Information Pharmaceut. Sci. 11 (3), 50–56 (2011).
  55. Haiting L., Jiao L., Fengyan Z., Huiqing W., Yi Q., Dezhi M., Nitric oxide synthase in hypoxic or ischemic brain injury. Rev. Neurosci., 26 (1), 105–117 (2015). doi: 10.1515/revneuro-2014-0041
  56. Yurtaeva S. V., Efimov V. N., Yafarova G. G.,Eremeev A. A., Iyudin V. S., Rodionov A. A., Gainutdinov Kh. L., and Yatsyk I. V. EPR Detection of Iron Storage in Rat Tissues After Simulated Microgravity Model. Appl. Magn. Reson., 47 (6), 555–565 (2016).
  57. Prusakov V. E., Maksimov Y. V., Burbaev D. Sh., Serezhenkov V. A., Borodulin R. R., Tkachev N. A., Mikoyan V. D., and Vanin A. F. EPR and mössbauer characteristics of aqueous solutions of 57Fe-dinitrosyl iron complexes with glutathione and hydroxyl ligands. Appl. Magn. Reson., 50 (7), 861–881 (2019).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies