Identification of Two QTLs Contolling Flax Resistance to Fusarium Wilt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bulk segregant analysis was applied to the evaluation of F2 population developed by crossing two flax cultivars which differ in the resistance genes to Fusarium wilt. The causative agent of this disease, the fungus Fusarium oxysporum f. sp. lini, is one of the main flax pathogens causing enormous economic damage to the linen industry worldwide. DNA pools of highly resistant and susceptible F2 plants to Fusarium wilt were sequenced and subsequent data analysis identified two regions on chromosomes 9 and 13 that conferred resistance to Fusarium wilt. Candidate genes for subsequent analysis were selected by functional gene annotation and by analyzing the expression of genes in QTL regions based on data generated in transcriptomic experiment made with the infected flax cultivar Atalante resistant to Fusarium. By combining these two approaches, three candidate genes were identified within each of QTL regions which, according to the literature data, are involved in the plant response to infection and have been differentially expressed in the transcriptomics experiment.

About the authors

T. A Rozhmina

Federal Research Centre for Bast Crops

Komsomolsky prosp. 17/56, Tver, 170041, Russia

A. A Kanapin

Peter the Great St. Petersburg Polytechnic University

Polytechnicheskaya ul. 29, Saint-Petersburg, 195251, Russia

M. P Bankin

Peter the Great St. Petersburg Polytechnic University

Polytechnicheskaya ul. 29, Saint-Petersburg, 195251, Russia

M. G Samsonova

Peter the Great St. Petersburg Polytechnic University

Email: m.g.samsonova@gmail.com
Polytechnicheskaya ul. 29, Saint-Petersburg, 195251, Russia

References

  1. Dean R., Van Kan J. A., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu P. D., Rudd J. J., Dickman M., Kahmann R., Ellis J., Foster G. D. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol., 13 (4), 414–430 (2012). doi: 10.1111/j.1364-3703.2011.00783.x
  2. Knowles P. F. and Houston B. R. Inheritance of Resistance to Fusarium Wilt of Flax in Dakota Selection 48–94. Agron. J., 47, 131–135 (1955). doi: 10.2134/agronj1955.00021962004700030006x
  3. Rashid K. Y. and Kenaschuk E. O. Effect of trifluralin on fuarium wilt in flax. Can. J. Plant Sci., 73, 893–901 (1993). doi: 10.4141/cjps93-117
  4. Sánchez-Martín J. and Keller B. Contribution of recent technological advances to future resistance breeding. Theor. Appl. Genet., 132, 713–732 (2019). doi: 10.1007/s00122-019-03297-1
  5. Sanchez-Bayo F. Impacts of Agricultural Pesticides on Terrestrial Ecosystems. In: Ecological Impacts of Toxic Chemicals, Ed. by F. Sánchez-Bayo, P. J. van den Brink, and R. M. Mann (Bentham Science Publishers Ltd, 2011), pp. 63–87.
  6. Рожмина T. A. и Лошакова Н. И. Образцы прядильного и масличного льна (Linum usitatissimum L.) – источники эффективных генов устойчивости к фузариозному увяданию и ее зависимость от температуры. С.-х. биология, 51 (3), 310–317 (2016).doi: 10.15389/agrobiology.2016.3.310rus
  7. Рожмина T. A., Пролётова Н. В. и Ущаповский И. В. Изучение контроля устойчивости к фузариозному увяданию (Fusarium oxysporum f. lini) на начальных этапах селекционного процесса льна-долгунца Кормопроизводство, HYPERLINK “https://elibrary.ru/contents.asp?id=50173285&selid=50173290”9, 22–26 (2022).
  8. Kourelis J. and van der Hoorn R. A. L. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell, 30 (2), 285-299 (2018). doi: 10.1105/tpc.17.00579J.
  9. Jones J. D. G. and Dangl J. L. Plant pathogens and integrated defence responses to infection. Nature, 444 (7117), 323–329 (2006). doi: 10.1038/nature05286
  10. Tsuda L., Inoue Y. H., Yoo M. A., Mizuno M., HataM., Lim Y. M., Adachi-Yamada T., Ryo H., Masamune Y., and Nishida Y. A protein kinase similar to MAP kinase activator acts downstream of the raf kinase in Drosophila. Cell, 72, 407–414 (1993).
  11. Künstler A., Bacsó R., Gullner G., Hafez Y. M., and Király L. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 93, 75–84 (2016). doi: 10.1016/j.pmpp.2016.01.003
  12. Zhong Y. and Cheng Z. M. A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication. Sci. Rep., 6, 32923 (2016). doi: 10.1038/rep32923
  13. Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol., 20 (8), 1163–1178 (2019). doi: 10.1111/mpp.12821
  14. de Araújo A. C., Fonseca F. C. D. A., Cotta M. G., Alves G. S. C., and Miller R. N. G. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. Biotechnol. Res. Innovation, 3, 80–94 (2019).
  15. Block A., Alfano J. R. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr. Opin. Microbiol., 14, 39–46 (2011). doi: 10.1016/j.mib.2010.12.011
  16. Dmitriev A. A., Krasnov G. S., Rozhmina T. A., Novakovskiy R. O., Snezhkina A. V., Fedorova M. S., Yurkevich O. Yu., Muravenko O. V., Bolsheva N. L., Kudryavtseva A. V., and Melnikova N. V. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.). BMC Plant Biol., 17 (Suppl. 2), Art. 253 (2017). doi: 10.1186/s12870-017-1192-2
  17. Galindo-González L. and Deyholos M. K. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Front. Plant Sci., 24 (7), 1766 (2016). doi: 10.3389/fpls.2016.01766
  18. Boba A., Kostyn K., Kozak B., Zalewski I., Szopa J., and Kulma A. Transcriptomic profiling of susceptible and resistant flax seedlings after Fusarium oxysporum lini infection. PLoS One, 16 (1), e0246052 (2021). doi: 10.1371/journal.pone
  19. Spielmeyer W., Green A., Bittisnich D., Mendham N., and Lagudah E. S. Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum). Theor. Appl. Genet., 97, 633–641 (1998). doi: 10.1007/s001220050939
  20. Spielmeyer W., Lagudah E. S., Mendham N., and Green A. G. Inheritance of resistance to flax wilt (Fusarium oxysporum f.sp. lini Schlecht) in a doubled haploid population of Linum usitatissimum L. Euphytica, 101, 287–291 (1998).
  21. Kanapin A., Bankin M., Rozhmina T., Samsonova A., and Samsonova M. Genomic regions associated with Fusarium wilt resistance in flax. Int. J. Mol. Sci., 22, 12383 (2021). doi: 10.3390/ijms222212383
  22. Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., Innan H., Cano L. M., Kamoun S., and Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J., 74, 174–183 (2013). doi: 10.1111/tpj.12105
  23. Magwene P. M., Willis J. H., and Kelly J. K. The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput. Biol., 7, e1002255 (2011).
  24. Рожмина T. A. Селекционно-ценные гены устойчивости к фузариозному увяданию у льна. Достижения науки и техники АПК, 29 (12), 47–49 (2015).
  25. Li H. and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Bioinformatics, 25 (14), 1754-1760 (2009). doi: 10.1093/bioinformatics/btp324
  26. Tello D., Gil J., Loaiza C. D., Riascos J. J., Cardozo N., and Duitama J. NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics, 35 (22), 4716–4723 (2019). doi: 10.1093/bioinformatics/btz275
  27. Singh V. K., Khan A. W., Jaganathan D., Thudi M., Roorkiwal M., Takagi H., Garg V., Kumar V., Chitikineni A., Gaur P. M., Sutton T., Terauchi R., and Varshney R. K. QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol. J., 14 (11), 2110–2119 (2016). doi: 10.1111/pbi.12567
  28. Chen Y., Chen Y., Shi C., Huang Z., Zhang Y., Li S., Li Y., Ye J., Yu C., Li Z., Zhang X., Wang J., Yang H., Fang L., and Chen Q. Soapnuke: a mapreduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 7 (1), 1–6 (2018). doi: 10.1093/gigascience/gix120
  29. Ewing B., Hillier L., Wendl M. C., and Green P. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res., 8 (3), 175–185 (1998). doi: 10.1101/gr.8.3.175
  30. You F. M. and Cloutier S. Mapping quantitative trait loci onto chromosome-scale pseudomolecules in flax. Methods Protoc., 3, 28 (2020). doi: 10.3390/mps3020028
  31. D. R. Metcalfe and S. B. Helgason. Inheritance of loose smit resistance. Can. J. Plant Sci., 42, 472–480 (1962). doi: 10.4141/cjps62-075
  32. Sun X., Han G., Meng Z., Lin L., and Sui N. Roles of Malic Enzymes in Plant Development and Stress Responses. Plant Signal. Behav., 14 (10), e1644596 (2019). doi: 10.1080/15592324.2019.1644596
  33. Romeis T. Protein kinases in the plant defence response. Curr. Opin. Plant Biol., 4 (5), 407–414 (2001). doi: 10.1016/s1369-5266(00)00193-x
  34. Liu Z., Hou S., Rodrigues O., Wang P., Luo D., Munemasa S., Lei J., Liu J., Ortiz-Morea F. A, Wang X., Nomura K., Yin C., Wang H., Zhang W., Zhu-Salzman K., He S. Y., He P., and Shan L. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature, 605 (7909), 332–339 (2022). doi: 10.1038/s41586-022-04684-3
  35. Berkey R., Zhang Y., Ma X., King H., Zhang Q., WangW., and Xiao S. Homologues of the RPW8 Resistance Protein Are Localized to the Extrahaustorial Membrane that Is Likely Synthesized De Novo. Plant Physiol., 173 (1), 600–613 (2017). doi: 10.1104/pp.16.01539
  36. C. Zheng, K. Y. Rashid, S. Cloutier, et al., In: The FlaxGenome. Compendium of Plant Genomes. Ed by F.M. You and B. Fofana (Springer, 2023), pp. 121–148.
  37. Yao N. and Greenberg J. T. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell, 18 (2), 397–411 (2005). doi: 10.1105/tpc.105.036251
  38. He K. and Wu Y. Receptor-like kinases and regulation of plant innate immunity. Enzyme, 40, 105–142 (2016). doi: 10.1016/bs.enz.2016.09.003

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies