Superoxide Generating Activity of Nicotinamide Coenzymes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been shown that nicotinamide coenzymes (NADPH, NADH, NADP+, NAD+) are capable of generating superoxide anions (O2─●) in an alkaline environment. The superoxide-generating activity of coenzymes is associated with high pH values and is sensitive to SOD. However, nicotinamide itself, being a functional part of coenzyme molecules, does not have this property. Polarographic studies have shown that in the presence of coenzymes, molecular oxygen is consumed from the buffer, namely oxygen activation occurs due to the formation of O2-●. Based on the results obtained and in accordance with the literature, our observations suggest that the formation of adducts of nicotinamide, which is part of the coenzyme molecule, and hydroxyl anions (OH−) may lead to the formation of O2─●. Under mild conditions in the organism, the studied coenzymes, while performing their main functions, are expected to generate superoxide, meaning that they can be signaling molecules.

About the authors

T. V Sirota

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: sirotatv@rambler.ru
Institutskaya ul. 3, Pushchino, Moscow Region, 142290, Russia

References

  1. Сирота Т. В. Генерация супероксида никотинамидными коферментами. Biomed. Chem.: Research and Methods, 6 (1), e00188 (2023). doi: 10.18097/BMCRM00188
  2. Сирота Т. В. и Сирота Н. П. К механизму активации кислорода в химических и биологических системах. Биофизика, 67 (1), 5–13 (2022). doi: 10.31857/S000630292201001X
  3. Hayyan M., Hashim M. A., and Al Nashef I. M. Superoxide ion: generation and chemical implications. Chem.Rev., 116 (5), 3029–3085 (2016). doi: 10.1021/acs.chemrev.5b00407
  4. Andrés C. M. C., Pérez de la Lastra J. M., Andrés Juan C., Plou F. J., and Pérez-Lebeña E. Superoxide anion chemistry – its role at the core of the innate immunity. Int. J. Mol. Sci., 24 (3), 1841, (2023). doi: 10.3390/ijms24031841
  5. Ray P. D., Huang Bo-W., and Tsuji Y. Reactiv oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal., 24 (5), 981–990 (2012). doi: 10.1016/j.cellsig.2012.01.008
  6. Weihai Y. NAD+ and NADH in cellular functions and cell death, Front. Biosci., 11, 3129–3148 (2006). doi: 10.2741/2038
  7. Pollak N., Dölle C., and Ziegler M. The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochem. J., 402 (2), 205–218 (2007). doi: 10.1042/BJ20061638
  8. Мецлер Д. Биохимия: химические реакции в живой клетке (Мир, М., 1980), т. 2, сс. 250–253.
  9. http://vmede.org/sait/?page=15&id=Bioorganicheskaja_himija_tykavkina_2010&menu=Bioorganicheskaja_himija_tykavkina_2010
  10. Sirota T. V. A novel approach to study the reaction of adrenaline autooxidation: a possibility for polarographic determination of superoxide dismutase activity and antioxidant properties of various preparations. Biochemistry (Moscow). Suppl. Ser. B: Biomedical Chemistry, 5 (3), 253–259 (2011). doi: 10.1134/S1990750811030139
  11. Сирота Т. В. Использование нитросинего тетразолия в реакции автоокисления адреналина для определения активности супероксидисмутазы. Биомедицинская химия, 59 (4), 399–410 (2013). doi: 10.18097/pbmc20135904399
  12. Сирота Т. В. Цепная реакция автоокисления адреналина – модель хиноидного окисления катехоламинов. Биофизика, 65 (4), 646–655 (2020). doi: 10.31857/S0006302920040031
  13. Misra H. P. and Fridovich I. J. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 247 (10), 3170–3175 (1972).
  14. Altman F. P. Tetrazolium saits and formazans. Progr. Histochem. Cytochem., 9 (3), 1–56 (1976). doi: 10.1016/S0079-6336(76)80015-0
  15. Guilbertt C. C. and Johnson S. L. Isolation and characterization of the fluorescent alkali product from diphosphopyridine nucleotide. Biochemistry, 10 (12), 2313–2316 (1971). doi: 10.1021/bi00788a021
  16. Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., and Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39 (1), 44–84 (2007). doi: 10.1016/j.biocel.2006.07.001

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies