Background formation of lower levels of reactive oxygen species by neutrophils after hypomagnetic field exposure is not accompanied by the impairment of chemiluminescence response of neutrophils to respiratory-burst stimuli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study shows that the background formation of lower levels of reactive oxygen species in mouse peritoneal neutrophils after short-term (40 minutes) exposure to hypomagnetic fields with ~10 nT residual field at physiological temperatures, which has been detected by use of lucigenin-dependent chemiluminescence, is not accompanied by the impairment of chemiluminescence response of neutrophils to respiratory-burst stimuli: the formylated tripeptide N-formyl-Met-Leu-Phe (fMLF) and phorbol ester phorbol-12-myristate-13-ace-tate (PMA). These results were obtained with lucigenin or luminol-enhanced activated chemiluminescence and various combinations of reactive oxygen species production stimuli (phorbol-12-myristate-13-acetate and/or N-formyl-Met-Leu-Phe). Based on the results of the present work as well as on those of previous studies, this study reveal that the systems that control the respiratory burst in neutrophils can be excluded from a list of main targets and acceptors that respond to short-term deprivation of the magnetic field.

About the authors

V. V Novikov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: docmag@mail.ru
Pushchino, Moscow Region, Russia

E. V Yablokova

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

I. A Shaev

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

N. I Novikova

Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

E. E Fesenko

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

References

  1. V. N. Binhi and F. S. Prato, PLoS One, 12 (6), e0179340 (2017).
  2. B. Zhang and L. Tian, Bioelectromagnetics, 41 (8), 573 (2020).
  3. В. В. Крылов, Труды Ин-та биологии внутренних вод им. И.Д. Папанина РАН, № 84 (87), 7 (2018).
  4. H. Zadeh-Haghighi, R. Rishabh, and C. Simon, Front. Physiol., 11, 1026460 (2023). DOI: 10.3389/ fphy.2023.1026460.
  5. И. А. Шаев, В. В. Новиков, Е. В. Яблокова и Е. Е. Фесенко, Биофизика, 67 (2), 319 (2022).
  6. В. В. Новиков, Е. В. Яблокова и Е. Е. Фесенко, Биофизика, 63 (3), 484 (2018).
  7. В. В. Новиков, Е. В. Яблокова, И. А. Шаев и Е. Е. Фесенко, Биофизика, 65 (4), 735 (2020).
  8. T. B. Aasen, B. Bolann, J. Glette, et al., Scand. J. Clin. Lab. Invest., 47, 673 (1987).
  9. В. В. Новиков, Е. В. Яблокова, Э. Р. Валеева и Е. Е. Фесенко, Биофизика, 64 (4), 720 (2019).
  10. В. В. Новиков, Е. В. Яблокова, И. А. Шаев и Е. Е. Фесенко, Биофизика, 65 (2), 524 (2020).
  11. Е. В. Проскурнина, М. М. Созарукова, А. М. Полимова и др., Бюл. эксперим. биологии и медицины, 161 (2), 288 (2016).
  12. F. Rossi, P. Bellavite, G. Bertonet, et al., Adv. Exp. Med. Biol., 141, 283 (1982).
  13. В. Г. Сафронова, А. Г. Габдулхакова, А. В. Миллер и др., Биохимия, 66, 840 (2001).
  14. В. В. Новиков, Е. В. Яблокова, И. А. Шаев и Е. Е. Фесенко, Биофизика, 66 (3), 511 (2021).
  15. Ю. А. Владимиров и Е. В. Проскурнина, Успехи биол. химии, 49, 341 (2009).
  16. G. Fossati, D. A. Moulding, D. G. Spiller, et al., J. Immunol., 170, 1964 (2003).
  17. М. А. Мурина, Д. И. Рощупкин, Н. С. Белакина и др., Биофизика, 50, 1100 (2005).
  18. C. Dahlgren and A. Karlsson, J. Immunol. Methods, 232 (1-2), 3 (1999).
  19. H. Fu, J. Bylund, A. Karlsson, et al., Immunology, 12 (2), 201 (2004).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies