The refinement of the parameters of β-turns using neutron diffraction data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Beta-bends are a difficult to interpret type of polypeptide chain backbone structure of globular proteins. Beta-bends are usually classified according to the dihedral angles φ and ψ of amino acid residues i + 1 and i + 2. Ramachandran map analysis of amino acid residues i + 1 and i + 2 indicates the resulting conformational stresses in bending. The mechanism of stabilization of their energetically disadvantageous conformations is still unclear. This kind of conformation stresses can only be compensated by additional interactions, such as additional hydrogen bonds, whose geometry and energy compensates for the beta-bending stress. Neutronography is the only available direct method for determining the position of hydrogen atoms in the structures of chemical compounds, including proteins. In this work, beta-bends from 176 protein structures from PDB established by neutronography are studied. In these structures, 3733 beta-bends were found using the i → i + 3 hydrogen bonding criterion. Using clustering by the magnitude of conformational angles, eight types of bends were newly identified. The magnitudes of conformational angles for each type of bend were determined. The hypothesis of additional hydrogen bonding to stabilize the bend was not confirmed, suggesting that the bending stress is compensated by other factors.

Sobre autores

A. Korobkov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. Khurmuzakiy

I.M. Sechenov First Medical University (Sechenov University)

Moscow, Russia

N. Esipova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. Tymanyan

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. Anashkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: anastasia.a.anashkina@mail.ru
Moscow, Russia

Bibliografia

  1. C. M. Venkatachalam, Biopolymers, 6, 1425 (1968). doi: 10.1002/bip.1968.360061006
  2. P. N. Lewis, F. A. Momany, and H. A. Scheraga, Biochim. Biophys. Acta - Protein Struct., 303, 211 (1973). doi: 10.1016/0005-2795(73)90350-4
  3. J. S. Richardson, In Advances in Protein Chemistry, Ed. by C. B. Anfinsen, J. T. Edsall, and F. M. Richards, (Acad. Press, 1981), V. 34, pp. 167-339.
  4. P. Y. Chou and G. D. Fasman, J. Mol. Biol., 115, 135 (1977). doi: 10.1016/0022-2836(77)90094-8
  5. C. M. Wilmot and J. M. Thornton, J. Mol. Biol., 203, 221 (1988). doi: 10.1016/0022-2836(88)90103-9
  6. C. M. Wilmot and J. M. Thornton, Prot. Engineer., Design and Selection, 3 (6), 479 (1990). doi: 10.1093/protein/3.6.479
  7. E. G. Hutchinson and J. M. Thornton, Prot. Sci., 3, 2207 (1994).
  8. M. Shapovalov, S. Vucetic, and R. L. Dunbrack, PLoS Comput. Biol., 15 (3), e1006844 (2019). doi: 10.1371/journal.pcbi.1006844
  9. O. Koch and G. Klebe, Proteins, 74, 353 (2009). doi: 10.1002/prot.22185
  10. A. G. de Brevern, Sci. Rep., 6, 33191 (2016). doi: 10.1038/srep33191
  11. C. Micheletti, F. Seno, and A. Maritan, Proteins, 40, 662 (2000). doi: 10.1002/1097-0134(20000901)40: 4<662::aid-prot90>3.0.co;2-f
  12. Y. Liu, Z. Li, H. Xiong, et al., In Proc. IEEE Int. Conf. on Data Mining (2010), ISBN 978-1-4244-9131-5.
  13. D. Moulavi, P. A. Jaskowiak, R. Campello, et al., In Proc. SIAM Int. Conf. on Data Mining (2014). doi: 10.1137/1.9781611973440.96
  14. E. Oksanen, J. C.-H. Chen, and S. Z. Fisher, Molecules, 22, 596 (2017). doi: 10.3390/molecules22040596

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies