The inversion of the inotropic effect of isoproterenol in the rat myocardium during deep hypothermia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present study examined the effects of the в-adrenergic receptor agonist, isoproterenol, on contractile activity of right ventricle papillary muscles in the rat heart at near-physiological temperature (30°C) and under conditions of deep hypothermia (10°C). Isoproterenol exerts a pronounced positive inotropic effect at 30°C. After agonist addition, the force of contraction increases from 1.2 ± 0.1 mN in control to 2.4 ± 0.4 mN that leads to a reliable acceleration of time parameters of contraction. So, time-to-maximum contraction decreased from 101 ± 6 ms to 85 ± 4 ms; time-to-50% relaxation declined from 55 ± 3 ms to 36 ± 1 ms. Under hypothermic conditions, isoproterenol produced a powerful negative inotropic effect, reducing the force of contraction from 2.2 ± 0.4 mN to 1.2 ± 0.4 mN. Similarly as at 30°C, there was a tendency for increase in contraction speed, so time-to-maximum contraction decreased from 717 ± 52 ms to 624 ± 50 ms, and time-to-50% relaxation was shortened from 667 ± 86 ms to 450 ± 40 ms. Thus, under conditions of deep hypothermia at 10°C, the isoproterenol-induced inotropy changes from positive to negative, while negative lusitropic effect remains clear.

About the authors

C. V Samodurova

Institute of Cell Biophysics, Russian Academy of Sciences;St. Petersburg State Institute of Technology

Pushchino, Moscow Region, Russia;St. Petersburg, Russia

F. V Turin

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

A. S Averin

Institute of Cell Biophysics, Russian Academy of Sciences

Email: averinas82@gmail.com
Pushchino, Moscow Region, Russia

References

  1. J. Arrich, N. Schutz, J. Oppenauer, et al., Cochrane Database Syst. Rev., 5, CD004128 (2023).
  2. T. P. Grazioso and N. Djouder, iScience, 26, 107010 (2023).
  3. A. F. Aslam, A. K. Aslam, B. C. Vasavada, et al., Am. J. Med., 119, 297 (2006).
  4. K. C. Wong, West J. Med., 138, 227 (1983).
  5. T. Wood and M. Thoresen, Semin. Fetal Neonatal. Med., 20, 87 (2015).
  6. L. Maiuskova and M. Javorka, Physiol. Res., 70, S495 (2021).
  7. G. Wallukat, Herz, 27, 683 (2002).
  8. T. D. O'Connell, B. C. Jensen, A. J. Baker, et al., Pharmacol. Rev., 66, 308 (2014).
  9. O. Yu. Pimenov, M. H. Galimova, E. V. Evdokimovskii, et al., Biophysics, 64 (5), 738 (2019).
  10. M. Khamssi and O. E. Brodde, J. Cardiovasc. Pharmacol., 16 (Suppl 5), S1337 (1990).
  11. A. J. Baker, Pflugers Arch.: Eur. J. Physiol., 466, 1139 (2014).
  12. G. Fajardo, M. Zhao, G. Berry, et al., J. Mol. Cell. Cardiol., 51, 781 (2011).
  13. Y. Song, C. Xu, J. Liu, et al., Circ. Res., 128, 262 (2021).
  14. V. Tibenska, A. Marvanova, B. Elsnicova, et al., J. Appl. Physiol. 130, 746 (2021).
  15. S. Moniotte, L. Kobzik, O. Feron, et al., Circulation, 103, 1649 (2001).
  16. T. Angelone, E. Filice, A. M. Quintieri, et al., Acta Physiol. (Oxford), 193, 229 (2008).
  17. R. Treinys, D. Zablockaite, V. Gendviliene, et al., J. Membr. Biol., 247, 309 (2014).
  18. J. Garda-Prieto, J. M. Garda-Ruiz, D. Sanz-Rosa, et al., Basic Res. Cardiol., 109, 422 (2014).
  19. G. Kayki-Mutlu, I. Karaomerlioglu, E. Arioglu-Inan, et al., Eur. J. Pharmacol., 858, 172468 (2019).
  20. C. Pott, K. Brixius, W. Bloch, et al., Pharmazie, 61, 255 (2006).
  21. R. Salie, A. Kh. H. Alsalhin, E. Marais, et al., Cardiovasc. Drugs Ther., 33, 163 (2019).
  22. E. S. Dietrichs, G. Sager, and T. Tveita, Scand. J. Trauma Resusc. Emerg. Med., 24, 143 (2016).
  23. A. L. Melnikov, J. E. L0keb0, D. A. Lathrop, et al., Gen. Pharmacol., 27, 665 (1996).
  24. L. Riishede, F. Nielsen-Kudsk, Pharmacol. Toxicol., 66, 354 (1990).
  25. P. Badertscher, M. Kuehne, B. Schaer, et al., BMC Cardiovasc. Disord., 17, 277 (2017).
  26. T. Takahiro, S. Kou, Y. Toshinobu, et al., Heart Rhythm, 12, 644 (2015).
  27. A. S. Averin, M. N. Nenov, V. G. Starkov, et al., Toxins (Basel), 14 (2022).
  28. O. Okazaki, N. Suda, K. Hongo, et al., J. Physiol., 423, 221 (1990).
  29. D. B. Hoover, T. R. Ozment, R. Wondergem, et al., Shock, 43, 185 (2015).
  30. A. S. Averin, N. M. Zakharova, D. A. Ignat'ev, et al., Biophysics, 55 (5), 910 (2010).
  31. N. Kondo, Circ. Res., 59, 221 (1986).
  32. K. J. Broadley, Br. J. Pharmacol., 45, 123 (1972).
  33. M. Mattheussen, K. Mubagwa, H. van Aken, et al., Anest. and Analg., 82, 975 (1996).
  34. S. A. Omar, D. Hammad, and S. Varma, Indian J. Physiol. Pharmacol., 23, 199 (1979).
  35. T. E. Tenner and J. H. McNeill, Can. J. Physiol. Pharmacol., 56, 926 (1978).
  36. K. J. Broadley and J. H. McNeill, Can. J. Physiol. Pharmacol, 61, 572 (1983).
  37. R. G. Chess-Williams and K. J. Broadley, Eur. J. Pharmacol., 108, 25 (1985).
  38. Y. Nakae, S. Fujita, and A. Namiki, Anest. and Analg., 93, 846 (2001).
  39. D. M. Bers, Circ. Res., 87, 275 (2000).
  40. S. Miyamoto, M. Hori, M. Izumi, et al., Jpn. J. Pharmacol., 85, 75 (2001).
  41. R. Carpentier and M. Vassalle, Circ. Res., 31, 507 (1972).
  42. J. Deleze, Circ. Res., 8, 553 (1960).
  43. Y. Kokoz, A. S. Grichenko, A. F. Korystova, et al., Biosci. Rep., 19, 17 (1999).
  44. D. Reinhardt, R. Butzheinen, O. E. Brodde, et al., Eur. J. Pharmacol., 48, 107 (1978).
  45. E. S. Dietrichs, T. Schanche, T. Kondratiev, et al., Cryobiology, 70, 9 (2015).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies