Cell cycle parameters and ornithine decarboxylase activity in the red bone marrow of hibernating ground squirrels Urocitellus undulatus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During the hibernation season, the values for the parameters of the cell cycle of red bone marrow cells in the hibernating ground squirrels Urocitellus undulatus, when they return to an active-like state between periods of torpor and interbout arousal, do not differ from those observed in summer-active animals. In animals that enter a state of torpor, the cumulative percentage of cells in the resting phase (G0 phase) and pre-synthesis phase (G1 phase) increased from 71.8 to 76.0%, the percentage of cells in the synthesis phase (S phase) decreased from 19.3 to 15.3% compared to those animals that return to an active-like state between periods of torpor and interbout arousal. The cumulative percentage of cells in the post DNA synthesis phase (G2 phase) and mitosis (M) does not change, but (G2 + M)/S ratio increases. When animals enter a state of torpor, changes in parameter values are observed when the animal’s body temperature drops below 25°C, this effect refers to a system whose thermal relaxation time is a nonmonotonic function of the initial temperature. The activity of the key enzyme of polyamine synthesis ornithine decarboxylase, a marker of cell activation and proliferation during interbout arousal does not significantly differ from that observed in summer-active animals; the enzymatic activity decreases sharply, when animals decrease their body temperature below 25°C and enter a state of torpor, and this activity remains at a low level during hibernation and arousal until body temperature reaches 30°C. The role of changes in the parameter values associated with proliferative activity in adaptation of hematopoietic tissue during hibernation of the Yakutian ground squirrel is discussed.

About the authors

G. E Aksyonova

Institute of Cell Biophysics, Russian Academy of Sciences

Email: aksyonovage@rambler.ru
Pushchino, Moscow Region, Russia

O. S Logvinovich

Gomel State Medical University

Gomel, Belarus

V. N Afanasyev

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

K. I Lizorkina

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

References

  1. H. V. Carey, M. T. Andrews, and S. L. Martin, Physiol. Rev., 83 (4), 1153 (2003).
  2. F. Geiser, Annu. Rev. Physiol., 66, 239 (2004).
  3. Q. Guo, X. Mi, X. Sun et al., Sci. Rep., 7 (1), 10509 (2017).
  4. T0ien, K. L. Drew, M. L. Chao, and M. E. Rice, Am. J. Physiol., 281 (2), R572 (2001).
  5. T. R. Jinka, 0. T0ien, and K. L. Drew, J. Neurosci., 31 (30), 10752 (2011).
  6. M. S. Vinogradova, Comp. Biochem. Physiol. A, 91 (2), 235 (1988).
  7. I. I. Kruman, E. N. Ilyasova, S. A.Rudchenko, and Z. S. Khurkhulu, Comp. Biochem. Physiol. А, 90 (2), 233 (1988).
  8. В. М. Юнкер и Г. В. Алексеева, Эволюц. биохимия и физиология, № 2, 193 (1974).
  9. E. W. Carlier, J. Anat. Physiol., 27 (Pt 3), nil9, 354 (1893).
  10. Г. А, Клевезаль и А. И. Ануфриев, Зоологич. журн., 92 (4), 481 (2013).
  11. H. R. Bouma, A. M. Strijkstra, A. S. Boerema, et al., Vet. Immunol. Immunopathol., 136 (3-4), 319 (2010).
  12. S. T. Cooper, S. S. Sell, M. Fahrenkrog, et.al., Physiol. Genomics 48 (7), 513 (2016).
  13. Т. М. Шивачева и А. И. Хаджиолов, Арх. анат. гистол. эмбриол., 92 (5), 48 (1987).
  14. T. M. Shivatcheva and A. I. Hadjioloff, Dev.Comp. Immunol., 11 (4), 791 (1987).
  15. M. B. Al-Fageeh and C. M. Smales, Biochem. J., 397 (2), 247 (2006).
  16. J. Fujita, J. Mol. Microbiol. Biotechnol., 1 (2), 243 (1999).
  17. A. Roobol, M. J. Carden, R. J. Newsam, and C. M. Smales, FEBS J., 276 (1), 286 (2009).
  18. T. Neutelings, C. A. Lambert, B. V. Nusgens, et al., PLoS One, 8 (7), e69687 (2013).
  19. А. К. Гулевский, Ю. С. Ахатова и И. И. Щенявский, Probl. Cryobiol. Cryomed., 27 (2), 97 (2017).
  20. L. Hartwell, in Cell Cycle Control, Ed. by C. Hutchison and D. M. Glover, (Oxford University Press, 1995), pp. 1-15.
  21. C. W. Anderson, E. Appella, R. Bradshaw, and E. Dennis, in Regulation in organelle and cell compartment signaling (New York. Acad. Press, 2011), pp. 235-254.
  22. C. L. Rieder and R. W. Cole, Cell Cycle, 1 (3), 169 (2002).
  23. Z. Matijasevic, J. E. Snyder, and D. B. Ludlum, Oncol. Res., 10, 605 (1998).
  24. A. Moore, J. Mercer, G. Dutina, et al., Cytotechnology, 23, 47 (1997).
  25. Г. Е. Аксенова, О. С. Логвинович, Л. А. Фиалковская и др., Биохимия, 75 (9), 1257 (2010).
  26. H. M. Wallace, A. V. Fraser, and A. Hughes, Biochem. J., 376 (1), 1 (2003).
  27. Н. К. Бердинских, С. П. Залеток, Полиамины и опухолевый рост (Наук. Думка, Киев, 1985).
  28. A. E. Pegg, J. Biol. Chem. 281 (21), 14529 (2006).
  29. T. Thomas, T. J. Thomas, Cell. Mol. Life Sci., 58 (2), 244 (2001).
  30. R. M. Ray, B. J. Zimmerman, S. A. McCormack, et al., Am. J. Physiol., 276 (3), C684 (1999).
  31. D. L. Kramer, B.-D. Chang, Y. Chen, et al., Cancer Res., 61 (21), 7754 (2001).
  32. I. K. Kolomiytseva, L. N. Markevich, N. I. Perepelkina, et al., in Hypothermia: prevention, recognition and treatment, Ed. by J. I.V. Delgado and V. G. F. Garza (Nova Sci. Publ., N.Y., 2012), pp.1-42.
  33. V. N. Afanasyev, B. A. Korol, N. P. Matylevich, et al., Cytometry, 14 (6), 603 (1993).
  34. J. Janne, and H. G. Williams-Ashman, J. Biol. Chem., 246 (6), 1725 (1971).
  35. L. V. Slozhenikina, L. A. Fialkovskaya, and I. K. Kolomiytseva, Int. J. Radiat. Biol., 75 (2), 193 (1999).
  36. Г. И. Козинец, В. М. Погорелов, В.М. Котельников и др., Лаб. дело, № 7, 3 (1988).
  37. Д. А. Шмаров, Клин. Лаб. диагн., № 5, 40 (1993).
  38. H. R. Bouma, F. G. M. Kroese, J. W. Kok, et al., Proc. Natl. Acad. Sci. USA, 108 (5), 2052 (2011).
  39. C. C. Kurtz and H. V. Carey, Dev.Comp. Immunol., 31 (4), 415 (2007).
  40. M. Bohr, A. R. Brooks, and C. C. Kurtz, Dev.Comp. Immunol., 47 (2), 178 (2014).
  41. H. R. Bouma, G. J. Dugbartey, A. S. Boerema, et al., J. Leukoc. Biol., 94 (3), 431 (2013).
  42. T. Ohnishi, X. Wang, K. Ohnishi, and A. Takahashi, Oncogene, 16 (11), 1507 (1998).
  43. T. Sakurai, K. Itoh, Y. Liu, et al., Exp. Cell. Res., 309 (2), 264 (2005).
  44. H. Nishiyama, K. Itoh, Y. Kaneko, et al., J. Cell. Biol., 137 (4), 899 (1997).
  45. Г. Е. Аксенова, О. С. Логвинович, Д. А. Игнатьев и И. К. Коломийцева, Биофизика, 63 (2), 311 (2018).
  46. S. I. Hayashi and Y. Murakami, Biochem. J., 306 (1), 1 (1995).
  47. U. Mangold and E. Leberer, Biochem. J., 385 (1), 21 (2005).
  48. G. S. Travlos, Toxicol. Pathol., 34 (5), 548 (2006).
  49. R. W. Bullard and G. E. Funkhouser, Am. J. Physiol., 203 (2), 266 (1962).
  50. Н. М. Захарова, Фундаментальные исследования, 6, 1401 (2014).
  51. H. M. Zhang, J. N. Rao, X. Guo, et al., J. Biol. Chem., 279, 22539 (2004).
  52. S. Bhattacharya, R. M. Ray, and L. R. Johnson, Biochem J., 392, 335 (2005).
  53. P. Kucharewska, J. E. Welch, K. J. Svensson, and M. Belting, Biochem. Biophys. Res.Commun., 380 (2), 413 (2009).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies