A study on the radiosensitivity and induction of adaptive response in peripheral blood lymphocytes of patients with secondary immunodeficiency syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study examined radiosensitivity at low and high dose exposure to X-rays in human lymphocytes and the ability of low and high dose radiation to induce radioadaptive response when the peripheral blood cells from patients with secondary immune deficiency syndrome and healthy donors of different ages were irradiated in vitro. The frequency of micronuclei in cytochalasin-blocked binuclear lymphocytes in culture served as an indication of cytogenetic damage. It was found that the spontaneous level of cytogenetic damage in blood lymphocytes of patients with secondary immune deficiency syndrome was 2.5 times greater than that of healthy young and older volunteers and there was also a substantial interindividual variability in outcome parameters as compared to the data of control groups. There were no differences in mean values for radiosensitivity at low and high dose exposure of X-rays between the groups. In all groups, no correlation was shown between the spontaneous level of micronuclei in lymphocytes and the radiosensitivity of individuals. The adaptive response was induced with the same frequency and to the same extent in lymphocytes in patients with secondary immune deficiency syndrome and in healthy donors of different ages.

About the authors

O. M Rozanova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: rozanova.iteb@gmail.com
Pushchino, Moscow Region, Russia

E. N Smirnova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

T. A Belyakova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Protvino, Moscow Region, Russia

N. S Strelnikova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Protvino, Moscow Region, Russia

References

  1. G. Olivieri, J. Bodycote, and S. Wolff, Science, 223 (4636), 594 (1984).
  2. И. Н. Когарко, А. В. Аклеев, В. В. Петушкова и др., Радиация и риск, 31 (1), 93 (2022).
  3. И. И. Пелевина, В. В. Петушкова, В. А. Бирюков и др., Радиац. биология. Радиоэкология, 59 (3), 261 (2019).
  4. Y. Gucguen, A. Bontemps, and T.G. Ebrahimian, Cell Mol Life Sci., 76 (7), 1255 (2019).
  5. F. Cortese, D. Klokov, A. Osipov, et al., Oncotarget, 9 (18),14692 (2018).
  6. F. Rodel, B. Frey, U. Gaipl, et al., Curr. Med. Chem., 19 (12), 1741 (2012).
  7. V. E. Balakin, S. I. Zaichkina, O. M. Rozanova, et al., Dokl. Biol. Sci., 374, 488 (2000).
  8. S. I. Zaichkina, O. M. Rozanova, G. F. Aptikaeva, et al., Int. J. Low Radiat., 2 (1-2), 1 (2006).
  9. S. M. J. Mortazavi, T. Ikushima, and H. Mozdarani, Iran. J. Radat. Res., 1 (1), 55 (2003).
  10. J. F. Barquinero, L. Barrios, M. R. Caballln, et al., Int. J. Radiat. Biol., 67 (2), 187 (1995).
  11. M. Ghiassi-nejad, S. M. Mortazavi, J. R. Cameron, et al., Health Phys., 82 (1), 87 (2002).
  12. M. Fenech, W. P. Chang, M. Kirsch-Volders, et al., Mutat. Res., 534 (1-2), 65 (2003).
  13. S. Bonassi, A. Znaor, M. Ceppi, et al., Carcinogenesis, 28 (3), 625 (2006).
  14. J. Hall, P. A. Jeggo, C. West, et al., Mutat. Res. Rev. Mutat. Res., 771, 59 (2017).
  15. R. S. Tuano, N. Seth, and J. Chinen, Ann. Allergy Asthma Immunol., 127 (6), 617 (2021).
  16. Р. М. Хаитов, Иммунология (ГЭОТАР-Медиа, М., 2016).
  17. K. Lumniczky, N. Impens, G. Armengol, et al., Environ.Int., 149, 106212 (2021).
  18. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects, J. Am. Med. Association, 310 (20), 2191 (2013).
  19. V. E. Balakin, S. I. Zaichkina, D. Y. Klokov, et al., Докл. РАН, 363 (6), 843 (1998).
  20. S. I. Zaichkina, O. M. Rozanova, G. F. Aptikaeva, et al., Nonlinearity Biol. Toxicol. Med., 2 (3), 213 (2004).
  21. M. Fenech, Mutation Res., 455 (1-2), 81 (2000).
  22. А. М. Серебрянный, А. В. Алещенко, В. Я. Готлиб и др., Радиац. биология. Радиоэкология, 47 (1), 93 (2007).
  23. M. Geric, J. Popid, G. Gajski, et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 843, 46 (2019).
  24. Z. Siama, M. Zosang-Zuali, A. Vanlalruati, et al., Int. J. Radiat. Biol., 95 (6), 697 (2019).
  25. S. Ban, C. Konomi, M. Iwakawa, et al., J. Radiat. Res., 45 (4), 535 (2004).
  26. M. G. Andreassi, R. Barale, P. Iozzo, et al., Mutagenesis, 26 (1), 77 (2011).
  27. S. Bonassi, M. Neri, C. Lando, et al., Mutat. Res., 543 (2), 155 (2003).
  28. S. Bonassi, R. El-Zein, C. Bolognesi, et al., Mutagenesis. 26 (1), 93 (2011).
  29. R. El-Zein, A. Vral, and C. J. Etzel, Mutagenesis, 26 (1), 101 (2011).
  30. J. Depuydt, A. Baert, V. Vandersickel, et al., Int. J. Radiat. Biol., 89 (7), 532 (2013).
  31. M. Khattab, D. M. Walker, R. J. Albertini, et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 820, 8 (2017).
  32. S. I. Zaichkina, G. F. Aptikaeva, O. M. Rozanova, et al., Environ. Health Perspect., 105 (Suppl 6), 1441 (1997).
  33. I. Seth, M. C. Joiner, and J. D. Tucker, Int. J. Radiat. Oncol. Biol. Phys., 91 (1), 82 (2015).
  34. M. Gerid, A. M. Domijan, V. Gluscid, et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 810, 22 (2016).
  35. H. W. Gantenberg, K. Wuttke, C. Streffer, et al., Radiat. Res., 128 (3), 276 (1991).
  36. И. И. Пелевина, А. А. Алещенко, М. М. Антощина и др., Радиац. биология. Радиоэкология, 47 (6), 658 (2007).
  37. T. I. Ivanova, V. A. Khorokhorina, N. I. Sychenkova, et al., in Proc. 3rd Rus. Conf. with international participation "Radiobiological Foundations of Radiation Therapy" (2019), pp. 66-68.
  38. S. S. Sorokina, S. I. Zaichkina, O. M. Rozanova, et al., Biophysics, 61 (1), 144 (2016).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies