Analysis of the secondary structure of chromatin linker proteins HMGB1, H1 and their complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nonhistone chromosomal protein HMGB1 and histone H1 are chromatin linker proteins. The functions of linker proteins are closely related to their conformational state. Currently, the structure of proteins that play a key role in the formation of higher levels of chromatin structural organization is being actively studied. In this work, a comparative analysis of the secondary structure of the linker histone H1 and the nonhistone protein HMGB1 was carried out. By using UV-circular dichroism and FTIR spectroscopy it was shown that the positively charged histone H1 binds to the C-terminal fragment of HMGB1, stabilizing the resulting complex and inducing the formation of additional a-helical regions in both proteins.

About the authors

E. V Chikhirzhina

Institute of Cytology, Russian Academy of Sciences

Saint-Petersburg, Russia

A. M Polyanichko

Institute of Cytology, Russian Academy of Sciences;St Petersburg State University

Email: a.polyanichko@spbu.ru
Saint-Petersburg, Russia

References

  1. C. L. Woodcock and R. P. Ghosh, Cold Spring Harb. Perspect. Biol., 2, a000296 (2010).
  2. K. Luger, M. L. Dechassa, and D. J. Tremethick, Nat. Rev. Mol. Cell Biol., 13, 436 (2012).
  3. A. E. White, A. R. Hieb, and K. Luger, Sci. Rep., 6, 19122 (2016).
  4. Е. В. Чихиржина, Т. Ю. Старкова и А. М. Поляничко, Биофизика, 63, 1070 (2018).
  5. E. V. Chikhirzhina, T. Y. Starkova, A. Beljajev, et al., Int. J. Mol. Sci., 21, 7948 (2020).
  6. Е. В. Чихиржина, Т. Ю. Старкова и А. М. Поляничко, Биофизика, 65, 237 (2020).
  7. R. Reeves, DNA Repair, 36, 122 (2015).
  8. Е. В. Чихиржина, А. М. Поляничко и Т. Ю. Старкова, Цитология, 62, 716 (2020).
  9. E. V. Chikhirzhina, T. Yu. Starkova, and A. M. Polyanichko, Biophysics, 66, 373 (2021).
  10. A. Raucci, S. Di Maggio, F. Scavello, et al., Cell Mol. Life Sci., 76, 211 (2019)
  11. V. Ramakrishnan, J. T. Fich, V. Graziano, et al., Nature, 362, 219 (1993).
  12. C. Cerf, G. Lippens, V. Ramakrishnan, et al., Biochemistry, 33, 11079 (1994).
  13. Y. V. Postnikov and M. Bustin, Biochim. Biophys. Acta, 1859, 462 (2016).
  14. F. Totsingan and A. J. Jr. Bell, Prot. Sci., 22, 1552 (2013).
  15. Е. В. Чихиржина, Е. И. Костылева, А. М. Поляничко и В. И. Воробьев, Цитология, 40, 883 (1998).
  16. M. Watson, K. Stottm, and J. O. Thomas, Mol. Biol., 374, 1286 (2007).
  17. K. Stott, M. Watson, F. S. Howe, et al., J. Mol. Biol., 403, 706 (2010).
  18. J. Zlatanova and J. Yaneva, DNA Cell Biol., 10, 239 (1991).
  19. Е. И. Рамм, Е. В. Чихиржина, Е. И. Костылева и В. И. Воробьев, Биохимия, 59, 150 (1995).
  20. N. J. Greenfield, Nature Protocols, 1, 2876 (2006).
  21. Е. В. Чихиржина, А. М. Поляничко, Е. И. Костылева и В. И. Воробьев, Молекуляр. биология, 45, 356 (2011).
  22. A. M. Polyanichko, V. V. Andrushchenko, P. Bour, et al., In Circular Dichroism: Theory and Spectroscopy, ed. by D. S. Rodgers (Nova Science Publishers, N.-Y., 2012), pp. 67-126.
  23. A. Micsonai, F. Wien, L. Kernya, and J. Kardos, Biophys.Comput. Biol., 112, E3095 (2015).
  24. Е. В. Чихиржина, Е. И. Костылева, В. И. Воробьев и А. М. Поляничко, Цитология 60, 923 (2018).
  25. Y. Izumi, K. Matsuo, K. Fujii, et al., J. Radiat. Res., 59, 108 (2018).
  26. A. J. Miles, R. W. Janes, and B. A. Wallace, Chem. Soc. Rev., 50, 8400 (2021).
  27. A. Polyanichko and H. Wieser, Biopolymers, 78, 329 (2005).
  28. A. Polyanichko and E. Chikhirzhina, J. Mol. Struct., 1044, 167 (2013).
  29. А. М. Поляничко, В. И. Воробьев и Е. В. Чихиржина, Молекуляр. биология, 47, 338 (2013).
  30. Е. В. Чихиржина, А. М. Поляничко, А. Н. Скворцов и др., Молекуляр. биология, 36, 525 (2002).
  31. U. K. Laemmli, Nature, 227, 680 (1970).
  32. A. Louis-Jeune, M. A. Andrade-Navarro, and C. Perez-Iratxeta, Proteins, 80, 374 (2012).
  33. J. A. Morrow, M. L. Segall, S. Lund-Katz et al., Biochemistry, 39 (38), 11657 (2000).
  34. Е. Е. Тымченко, А. А. Солдатова, Е. В. Чихиржина и А. М. Поляничко, Биофизика, 67, 22 (2022).
  35. A. M. Read, P. D. Cary, C. Crane-Robinson, et al., Nucl. Acids Res., 21, 3427 (1993).
  36. J. Jumper, R. Evans, A. Pritzel, et al., Nature, 596, 583 (2021).
  37. M. Varadi, S. Anyango, M. Deshpande, et al., Nucl. Acids Res., 50 (D1), D439 (2022).
  38. https://www.uniprot.org/uniprotkb/P10103.
  39. https://www.uniprot.org/uniprotkb/Q0IIJ2.
  40. Т. Ю. Родионова, Е. В. Чихиржина, В. И. Воробьев и А. М. Поляничко, Журн. структур. химии 50, 1009 (2009).
  41. M. Polyanichko, E. V. Chikhirzhina, A. N. Skvortsov, et al., J. Biomolec. Struct. Dyn., 19, 1053 (2002).
  42. L. A. Kohlstaedt and R. D. Cole, Biochemistry, 3, 570 (1994).
  43. S. Kint and Y. A. Tomimatsu, Biopolimers, 18, 1073 (1979).
  44. A. Barth, Biochim. Biophys. Acta, 1767, 1073 (2007).
  45. А. М. Поляничко, Н. М. Романов, Т. Ю. Старкова и др., Цитология, 56, 316 (2014).
  46. Е. А. Тельная, Л. В. Плотникова, А. Д. Гарифуллин и др., Биофизика, 65, 1154 (2020).
  47. Л. В. Плотникова, А. М. Поляничко, М. В. Успенская и др., Вестн. Санкт-Петербургского ун-та, 4, 34 (2017).
  48. Л. В. Плотникова, М. О. Кобелева, Е. В. Борисов и др., Цитология, 60, 1037 (2018).
  49. J. Allan, T. Mitchell, and N. Harborne, J. Mol. Biol., 187, 591 (1986).
  50. R. Vila, I. Ponte, M. Collado, et al., J. Biol. Chem., 276, 46429 (2001).
  51. Е. И. Рамм, Е. В. Чихиржина, Е. И. Костылева и В. И. Воробьев, Биохимия, 59, 150 (1995).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies