Agar freezing solution for long-term cryopreservation of brain slices from non-hibernating animals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Our previous studies have shown that function of ionotropic glutamate receptors such as AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) and NMDA (N-methyl-D-aspartate) was impaired after long-term cryopreservation of brain slices at -10°C within 30-50 days. To elucidate the reasons for cryodamage to AMPA- and NMDA-dependent mechanisms, artificial cerebrospinal fluid (aCSF) solutions that contain agar at different concentrations (33, 44, and 50%) were used for cryopreservation of the rat olfactory cortex slices. After cryopreservation, the slices were warmed to 37°C and the amplitudes changes of AMPA and NMDA potentials, which reflected the activities of the AMPA and NMDA mechanisms, were evaluated; the results were compared with those obtained before cryopreservation. It was found that AMPA and NMDA potentials changed differently depending on the concentration of agar in artificial cerebrospinal fluid. In solutions with 33% agar, the amplitude of AMPA potentials increased by 60%, whereas, in contrast, the amplitude of NMDA potentials was equal to the values before cryopreservation. At agar concentration of 44% in the solution, the AMPA and NMDA amplitudes were increased by 70% and 80%, respectively. A complete recovery of the activities of AMPA and NMDA mechanisms was obtained after cryopreservation in a freezing solution with an agar concentration of 50%. Under these conditions, the amplitudes of the AMPA and NMDA potentials corresponded to those seen before cryopreservation. Thus, the results obtained indicate that agar added to the artificial cerebrospinal fluid solution is a cryoprotectant that protects AMPA- and NMDA-dependent mechanisms from cryoinjury. The freezing solution (artificial cerebrospinal fluid and agar) developed by us for cryopreservation of brain explants of non-hibernating animals will be used to create a cryobank of nervous tissue.

About the authors

A. A Mokrushin

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: mok@inbox.ru
Saint-Petersburg, Russia

References

  1. S. J. Paynter, Brain Res. Bull., 75, 1 (2008).
  2. S. Bojic, A. Murray, and B. L. Bentley, BMC Biol., 19 (1), 56 (2021).
  3. S. S. Parker, A. Moutal, and S. Cai, eNeuro, 5, 0135 (2018).
  4. F Pischedda, C. Montani, and J. Obergasteiger, Front. Cell Neurosci., 12, 81 (2018).
  5. J. Fang and Z. X. Zhang, Cryobiology, 29, 267 (1992).
  6. D. Petite and M. C. Calvet, Brain Res., 747,279 (1997).
  7. T. J. Collier, M. J. Gallagher, and C. D. Sladek, Brain Res., 623, 249 (1993).
  8. S. Jensen, T. Sorensen, and J. Zimmer, Cryobiology, 24, 120 (1987).
  9. А. А. Мокрушин и С. Е. Боровиков, Междунар. журн. прикл. фунд. исслед. 2 (2), 214 (2017).
  10. A. A. Mokrushin, Biol. Bull., 47, 71 (2020).
  11. T.P. Obrenovitch and J. Urenjak, Progr. Neurobiol., 51, 39 (1997).
  12. S. F Traynelis and S. D. Cull-Candy, Nature, 345, 347 (1990).
  13. Ю. И. Пичугин, Теоретические и практические аспекты современной криобиологии (Москва, 2013).
  14. A. G. E. Day, K. S. Bhangra, and C. Murray-Dunning, Tissue Engineering: Part C Methods, 23, 575 (2017).
  15. C. Zhang, Y. Zhou, and L. Zhang, Int. J Mol. Sci., 19, 3330 (2018).
  16. E. E. Benson, K. Harding, and M. Ryan, Cryoletters, 39, 14 (2018).
  17. S. Schneider and H. H. Klein, Eur. J. Med. Res., 16, 396 (2011).
  18. М. И. Митюшов, Н. А. Емельянов, А. А. Мокрушин и др., Переживающий срез мозга как объект нейрофизиологического и нейрохимического исследования (Наука, Л., 1986).
  19. А. А. Мокрушин, Биофизика, 66 (5), 954 (2021).
  20. B. Wowk, https://www.alcor.org (2007).
  21. K. Matsumura, F Hayashi, and T. Nagashima, Commun. Mater., 2, 15 (2021).
  22. D. Pegg, Cryopreservation in Essentials of Tissue Banking, Ed. by G. Galea (Springer Netherlands, 2010).
  23. P. J. Stiff, A. J. Murgo, and C. G. Zaroulis, Cryobiology, 20, 17 (1983).
  24. A. Stolzing, Y. Naaldijk, and V. Fedorova, Transfus. Apher. Sci., 46, 137 (2012).
  25. Б. П. Шипунов и В. И. Маркин, Химия растительного сырья, № 1, 73 (2020).
  26. А. И. Усов, Химия растительного сырья, № 2, 7 (2021).
  27. A. I. Usov, Adv. Carbohydrate Chem. Biochem., 65, 115 (2011).
  28. C. Delattre, T. A. Fenoradosoa, and P. Michaud, Brazil. Arch. Biol. Technol., 54 (6), 1075 (2011).
  29. A. M. Sousa, J. Borges, and A. F. Silva, Carbohydrate Polymers, 96 (1), 163 (2013).
  30. T. Matsuhashi, Agar/Food Gels, Ed. by Harris (Dordrecht, 1990).
  31. В. А. Евтушенко и Г. В. Варфаломеева, Высокомолекуляр. соединения, 5, 1867 (1963).
  32. Б. П. Шипунов, В. Е. Коптев, и В. И. Маркин, Химия растительного сырья, № 1, 53 (2018).
  33. A. I. Usov, Food Hydrocolloids, 12 (3), 301 (1998).
  34. Е. А. Анциферов, Е. В. Кудрявцева и А. А. Соболева, Вестн. Иркутского гос. техн. ун-та, 6 (46), 171 (2010).
  35. О. А. Максимова и В. В. Митин, Пищевая промышленность, 7, 45 (2013).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies