Melting calorimetry of rat liver nuclei in the presence of magnesium ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Differential scanning calorimetry was used to determine thermodynamic parameters of decondensation of intranuclear rat liver chromatin was induced by a decrease in the concentration of magnesium ions from 5 mM to 0 mM. The process of chromatin melting in the temperature range of 70-100°C occurs in the following order: melting of core-histones, melting of relaxed DNA, and melting of topologically constrained DNA. It was found that Tm and Д H of individual peaks also depend on the concentration of Mg2+ ions in the buffer. In nuclei with condensed chromatin, Mg2+ ions at a concentration of 5 mM increased significantly the Tm of core histones (by ~7°C), as compared to that in unfolded chromatin but at the same time lowered the Tm of nuclear DNA both in the relaxed and constrained state (by ~2.5°С and ~7.5°С, respectively). In the presence of Mg2+ ions, melting enthalpy for peaks increased significantly. At the same time, a decrease in molecular weights of intranuclear DNA levels out a stabilizing effect of Mg2+ ions on core histones. A rise in the concentration of Mg2+ ions above 5 mM leads to the appearance of a new peak with Tm above 100°С, which probably reflects the thermal behavior of some Mg-induced aggregates. Possible mechanisms underlying thermal behavior of chromatin inside the nucleus are discussed.

About the authors

G. Ya Kolomijtseva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia

A. N Prusov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: prusov@belozersky.msu.ru
Moscow, Russia

E. A Kolomijtseva

MIREA - Russian Technological University

Moscow, Russia

T. A Smirnova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;All-Russian Research Institute of Agricultural Biotechnology

Moscow, Russia

References

  1. E. I. Prieto and K. Maeshima, Essays Biochem., 63 (1), 133 (2019).
  2. J. R. Daban, Biochemistry, 39, 3861 (2000).
  3. G. Li and D. Reinberg, Curr. Opin. Genet. Dev., 21, 175 (2011).
  4. J. C. Hansen, Ann. Rev. Biophys. Biomol. Struct., 31, 361 (2002).
  5. В. Ю. Поляков, О. В. Зацепина, И. И. Киреев и др., Биохимия, 71, 6 (2006).
  6. Z. Zhou, R. Yan, W. Jiang, and J. M. K. Irudayaraj, Nanoscale Adv., 3 (4), 1019 (2021).
  7. M. Tark-Dame, R. van Driel, and D. W. Heermann, J. Cell Sci., 124 (6), 839 (2011).
  8. K. Maeshima, S. Tamura, J. C. Hansen, and Y. Itoh, Curr. Opin. Cell Biol., 64, 77 (2020).
  9. M. Egli, Chem. Biol., 9, 277 (2002).
  10. A. A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys., 79, 943 (2007).
  11. A. G. Cherstvy, Phys. Chem. Chem. Phys., 13, 9942 (2011).
  12. Z. J. Tan and S. J. Chen, Biophys. J., 91 (2), 518 (2006).
  13. V. A. Bloomfield, Biopolymers, 44 (3), 269 (1997).
  14. P. M. Schwarz, A. Felthauser, T. M. Fletcher, and J. C. Hansen, Biochemistry, 35 (13), 4009-(1996).
  15. M. de Frutos, E. Raspaud, A. Leforestier, and F. Livolant, Biophys. J., 81 (2), 1127 (2001).
  16. C. A. Davey, and T. J. Richmond, Proc. Natl. Acad. Sci. USA, 99 (17), 11169 (2002).
  17. A. Bertin, S. Mangenot, M. Renouard, et al., Biophys J., 93, 3652 (2007).
  18. N. Korolev, A. Allahverdi, Ye. Yang, et al., Biophys. J., 99, 1896 (2010).
  19. A. Zinchenko, N. V. Berezhnoy, S. Wang, et al., Nucl. Acids Res., 46, 635 (2018).
  20. M. Krafcikova, S. Dzatko, C. Caron, et al., J. Am. Chem. Soc., 141 (34), 13281 (2019).
  21. J. Ellenberg, A. Walter, C. Chapuis, and S. Huetol, J. Struct. Biol., 184 (3), 445 (2013).
  22. P. J. Giannasca, R. A. Horowitz, and C. L. Woodcock, J. Cell Sci., 105 (2), 551 (1993).
  23. T. Ohyama, Int. J. Mol. Sci., 20 (17), 4232 (2019).
  24. M. A. Billett and T. J. Hall, Nucl. Acids Res., 6 (8), 2929 (1979).
  25. Y. Shimamoto, S. Tamura, H. Masumoto, and K. Maeshima, Mol. Biol. Cell, 28 (11), 1580 (2017).
  26. S. Schnell and R. Hancock, Methods Mol. Biol., 463, 3 (2008).
  27. R. Hancock, Biochemistry (Mosc.), 83 (4), 326 (2018).
  28. R. Strick, P. L. Strissel, K. Gavrilov, and R. Levi-Setti, J. Cell Biol., 155 (6), 899 (2001).
  29. N. Korolev, O. V. Vorontsova, and L. Nordenskiold, Prog. Biophys. Mol. Biol., 95, 23 (2007).
  30. S. E. Farr, E. J. Woods, J. A. Joseph, et al., Nat. Commun., 12 (1), 2883 (2021).
  31. А. Н. Прусов, Т. А. Смирнова и Г. Я. Коломийцева, Биохимия, 80 (3), 427 (2015).
  32. А. С. Спирин, Биохимия, 23, 656 (1976).
  33. A. Prado, C. Puyo, J. Arlucea, et al., J. Colloid Interface Sci., 177 (1), 9 (1996).
  34. N. A. Touchette and R. D. Cole, Proc. Natl. Acad. Sci. USA, 82, 2642 (1985).
  35. C. Balbi, M. L. Abelmoschi, L. Gogioso, S. Parodi, et al., Biochemistry, 28, 3220 (1989).
  36. C. Nicolini, A. Diaspro, L. Vergani, and G. Cittadini, Int. J. Biol. Macromol., 10, 137 (1988).
  37. M. Almagor and R. D. Cole, Biochemistry, 28, 5688 (1989).
  38. N. A. Touchette and R. D. Cole, Biochemistry, 31, 1842 (1992).
  39. A. N. Prusov, G. Ya. Kolomijtseva, and T. A. Smirnova, Pharmaceut. Biol., 55, 687 (2017).
  40. B. Cavazza, G. Brizzolara, G. Lazzarini, et al., Biochemistry, 30 (37), 9060 (1991).
  41. C. Balbi, P. Sanna, P. Barboro, et al., Biophys. J., 77 (5), 2725, (1999).
  42. S. Noriega, G. Budhiraja, and A. Subramanian, Int. J. Biochem. Cell Biol., 44 (8), 1331 (2012).
  43. M. Almagor and R. D. Cole, J. Biol. Chem., 264, 6515 (1989).
  44. А. Н. Прусов, Т. А. Смирнова и Г. Я. Коломийцева, Биохимия, 83 (10), 1534 (2018).
  45. Z. Darzynkiewicz, F. Traganos, T. Sharpless, and M. R. Melamed, J. Cell Biol., 68 (1), 1(1976).
  46. X. Ni and R. D. Cole, Biochemistry, 33 (31), 9276 (1994).
  47. I. Sissoeff, J. Grisvard, and E. Guill6, Prog. Biophys. Mol. Biol., 31 (2), 165 (1976).
  48. Y. P. Blagoi, V. A. Sorokin, V. A. Valeyev, et al., Biopolymers, 17 (5), 1103 (1978).
  49. А. П. Власов, Л. И. Яхонтова и В. Т.Андрианов, Биофизика, 36 (3), 437(1991).
  50. K. Serec, S. D. Babic, R. Podgornik and S. Tomic, Nucl. Acids Res., 44, 178456 (2016).
  51. I. Koltover, K. Wagner, and C. R. Safinya, Proc. Natl. Acad. Sci. USA, 97 (26), 14046 (2000).
  52. A. A. Kornyshev and S. Leikin, J. Chem. Phys., 107, 3656 (1997).
  53. A. G. Cherstvy and A. A. Kornyshev, J. Phys. Chem., 109 (26), 13024 (2005).
  54. A. G. Cherstvy and V. B. Teif, J. Biol. Phys., 39 (3), 363 (2013).
  55. Zh.-L. Zhang, Y. Y. Wu, K. Xi, et al., Biophys. J., 113, 517 (2017).
  56. G. R. Clark, C. J. Squire, L. J. Baker, et al., Nucl. Acids Res., 28 (5), 1259 (2000).
  57. L. McFail-Isom, X. Shui, and L. Williams, Biochemistry, 37 (49), 17105 (1998).
  58. J. E. Morgan, J. W. Blankenship, and H. R. Matthews, Arch. Biochem. Biophys., 246 (1), 225 (1986).
  59. G. S. Ott, R. Ziegler, and W. R. Bauer, Biochemistry, 14 (15), 3431 (1975).
  60. J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, Jr., Biophys. J., 69 (6), 2623 (1995).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies