Influence of neurotrophic factors on protein composition during somatic nerve injury and regeneration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The quantity of neurotrophic factors and the protein composition of somatic nerve membranes in rats during injury and survival of nerves under the action of clobetasol have been explored. It has been shown that the drug administered intramuscularly produces more pronounced effect on the increase in the level of neurotrophic growth factors and structural proteins responsible for recovery processes than the drug released from hydrogel derived from microbial polysaccharides as well as stabilizes the content of the total protein fraction of damaged somatic nerves. Proteins of the injured neural conductor are less degraded during intramuscular injection of clobetasol probably because of better availability of the drug administered by injection than availability of the drug administered (slow drug release) from hydrogel composite. In addition, an increase in the amount of DNA and some protein fractions indicates that clobetasol is able to participate in an activation of genes associated with remyelination. We suppose that clobetasol can stimulate synthesis of neurotrophic growth factors, thereby triggering phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling pathways that regulate the processes of cytoskeletal reorganization and axonal growth, as well as enhance the rate of synthesis of structural and axonal proteins necessary to restore the functional activity of injured nerve conductors.

About the authors

T. P Kuzmenko

National Research Ogarev Mordovia State University

Email: zyuzina-tatjana@mail.ru
Saransk, Russia

M. V Parchaikina

National Research Ogarev Mordovia State University

Saransk, Russia

E. S Revina

National Research Ogarev Mordovia State University

Saransk, Russia

M. Yu Gladysheva

National Research Ogarev Mordovia State University

Saransk, Russia

V. V Revin

National Research Ogarev Mordovia State University

Saransk, Russia

References

  1. X. Zhang, X. He, Q. Li, et al., Stem Cell Rep., 9 (8), 1256 (2017).
  2. K. Sdnchez-Alegria, M. Flores-Lebn, E. Avila-Munoz, et al.Int. J. Mol. Sci., 19, 3725 (2018).
  3. V. V. Revin, M. A. Yudanov, and G. V. Maksimov, Bull. Exp. Biol. Med., 142 (2), 191 (2006).
  4. S. I. Pinyaev, T. P. Kuzmenko, N. V. Revina, et al., BioMed Res.Int., 2019, 1-9 (2019).
  5. M. V. Isakina, N. V. Revina, and V. V. Revin, Biol. Med., 7 (2), (2006).
  6. Z. Du, O. Bondarenko, D. Wang, et al., J. Cell Physiol., 231 (6), 1301 (2016).
  7. O. Bota and L. Fodor, Drug Metab. Rev., 51 (3), 266 (2019).
  8. П. К. Мирошникова, А. В. Люндуп, Н. П. Бацаленко и др., Вестн. РАМН, 73 (6), 388 (2018).
  9. V. V. Revin, S. I. Pinyaev, M. V. Parchaykina, et al., Front. Physiol., 10, 384 (2019).
  10. F. Gonzalez-Perez, E. Udina, and X. Navarro, Int. Rev. Neurobiol., 108, 257 (2013).
  11. F. J. Najm, M. Madhavan, A. Zaremba, et al., Nature, 522 (7555), 216 (2015).
  12. S. Morisaki, M. Nishi, and H. Fujiwara, Glia, 58, 954 (2010).
  13. А. Н. Хлебникова, Фармакотерапия в дерматовенерологии, 5, 124 (2010).
  14. X. Fontana, M. Hristova, and C. Da Costa, J. Cell Biol., 198, 127 (2012).
  15. T. M. Brushart, M. Aspalter, J. W. Griffin, et al., Exp. Neurol., 247, 272 (2013).
  16. W. Shi, S. Bi, Ya. D. et al., Exp. Ther. Med., 18 (2), 1258 (2019).
  17. И. Я. Бозо, А. И. Билялов, М. О. Мавликеев и Р. В. Деев, Гены и клетки, 14 (1), 16 (2019).
  18. D. Nunes, S. Andrade, M. J. Ramalho, et al. Polymers (Basel), 14 (5), 1010 (2022).
  19. T. Mosmann. J. Immunol., Methods, 65, 55 (1983).
  20. В. В. Ревин, Дис.. д-ра биол. наук (Институт биологической физики АН СССР, Минск, 1990).
  21. O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., J. Biol. Chem., 193, 265 (1951).
  22. U. K. Laemmli, Nature, 277, 680 (1970).
  23. L. L. Boodram, in Protocol Online - Your Lab's Reference Book - online database of research protocols in a variety of life science fields (2006). http://www.protocolonline.org/prot/ Protocols/Extraction-of-genomic-DNA-from-whole-blood-3171.html.
  24. F. Ahmed, E. Zapata-Mercado, S. Rahman, and K. Hristova. Biophys J., 120 (1), 55 (2021).
  25. А. И. Продан, Л. М. Бенгус и А. А. Сиренко, Ортопедия, травматология и протезирование, 3 (2), 66 (2010).
  26. H. Querfurth and H. K. Lee, Mol. Neurodegener., 16 (1), 44 (2021).
  27. H. Huang, H. Liu, R. Yan, and M. Hu, Neurochem. Res., 42 (12), 3515 (2017).
  28. S. R. Hutton, J. M. Otis, E. M. Kim, et al., J. Neurosci., 37 (34), 8102 (2017).
  29. M. Caillaud, L. Richard, J.-M. Vallat, et al. Neural Regen. Res., 14 (1), 24 (2019).
  30. A. Yuan, M. V. Rao, Veeranna, and R.A. Nixon, Cold Spring Harb. Perspect. Biol., 9 (4), a018309 (2017).
  31. C. Galindo-Romero, B. Vidal-Villegas, J. Asis-Martfnez, et al., Int. J. Mol. Sci., 22 (19), 10896 (2021).
  32. J. E. Kim, Y. H. Cho, and T. B. Seo, J. Exerc. Rehabil., 16 (2), 141 (2020).
  33. Q. Cai, G. Wu, M. Zhu, et al., Life Sci., 248, 117465 (2020).
  34. D. Chung, A. Shum, and G. Caraveo, Front. Cell Dev. Biol., 8, 567537 (2020).
  35. S. Y. Cheng, S. C. Wang, M. Lei, et al., Neural Regen. Res., 13 (3), 556 (2018).
  36. С. С. Архипова, И. С. Рагинов, А. Р. Мухитов и Ю. А. Челышев, Морфология, 135 (3), 29 (2009).
  37. L. Zhang, W. Yang, H. Xie, et al., ACS Biomater. Sci. Eng., 5 (3), 1426 (2019).
  38. А. Е. Ковражкина, Л. В. Стаховская, О. Д. Разинская и А. В. Сердюк, Журн. неврологии и психиатрии, 5, 143 (2018).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies