Possibilities of Studying Biological Objects on a Pulsed Reactor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Small-angle scattering makes it possible to solve structural biology problems without specific sample preparation, which is typical for methods such as X-ray diffraction of protein crystals or cryo-electron microscopy of proteins. In our review, it is shown how to use small-angle scattering to address biological problems. The use of small-angle scattering is suggested for applications as a tool to control the quality of the assembly of proteins and protein complexes and to test the identity of the structural organization of biological objects in the native state and in prepared samples before measurements by X-ray diffraction or cryo-electron microscopy. This work demonstrates the possibilities of the small-angle neutron scattering spectrometer YuMO based on the IBR-2 pulsed reactor (Laboratory of neutron physics, Joint Institute for Nuclear Research, Dubna, Russia) to solve a whole array of problems, with an eye toward applying these in biophysics, structural biology, and biotechnology. This review presents and discusses the main findings of the studies of various biological systems obtained by using the setup small-angle scattering of neutrons YuMO. The possibilities of development of structural biology methods with the help of small-angle scattering, including protein crystallization, are shown.

About the authors

A. V Vlasov

Joint Institute for Nuclear Research, Russian Biotechnological University (ROSBIOTECH)

Dubna, Moscow region, Russia

Yu. L Ryzhykau

Joint Institute for Nuclear Research, Russian Biotechnological University (ROSBIOTECH)

Dubna, Moscow region, Russia

I. V Manukhov

Russian Biotechnological University (ROSBIOTECH)

Moscow, Russia

S. V Bazhenov

Russian Biotechnological University (ROSBIOTECH)

Moscow, Russia

S. A Kurakin

Joint Institute for Nuclear Research, Institute of Physics, Kazan Federal University

T. N Murugova

Joint Institute for Nuclear Research

Dubna, Moscow region, Russia

A. I Ivankov

Joint Institute for Nuclear Research

Dubna, Moscow region, Russia

V. V Skoy

Joint Institute for Nuclear Research

Dubna, Moscow region, Russia

A. V Rogachev

Joint Institute for Nuclear Research

Dubna, Moscow region, Russia

D. P Verteletskiy

Mainchemproject South, LLC

Yerevan, Armenia

A. Kh Islamov

Joint Institute for Nuclear Research

Dubna, Moscow region, Russia

N. Kucherka

Joint Institute for Nuclear Research, Bratislava, Slovakia

V. I Gordeliy

Joint Institute for Nuclear Research

Dubna, Moscow region, Russia

A. I Kuklin

Joint Institute for Nuclear Research

Email: kuklin@nf.jinr.ru
Dubna, Moscow region, Russia

References

  1. A. I. Kuklin, O. I. Ivankov, A. V. Rogachev, et al., Crystallogr. Rep., 66 (2), 231 (2021). DOl: 10.1134/S1063774521020085
  2. Ю. М. Останевич и И. Н. Сердюк, Успехи физ. наук, 137 (5), 85 (1982). doi: 10.3367/UF-NR.0137.198205D.0085
  3. A. I. Kuklin, A. N. Ozerin, A. Kh. Islamov, et al., J. Appl. Crystallogr., 36 (3), 679 (2003), doi: 10.1107/S0021889803006186
  4. A. I. Kuklin, A. D. Rogov, Y. E. Gorshkova, et al., Phys. Part. Nuclei Lett., 8 (2), 119 (2011), doi: 10.1134/S1547477111020075
  5. T. N. Murugova, A. V. Vlasov, O. I. Ivankov, et al., J. Optoelectron. Adv. Mater., 17 (9-10), 1397 (2015).
  6. D. V. Zabelskii, A. V. Vlasov, Yu. L. Ryzhykau, et al., J. Phys.: Conf. Ser., 994 (1), 012017 (2018). doi: 10.1088/1742-6596/994/1/012017
  7. А. И. Куклин, А. Д. Рогов, Ю. Е. Горшкова и др., Письма в ЭЧАЯ, 8 (2), 200 (2011).
  8. A. I. Kuklin, A. K. Islamov, and V. I. Gordeliy, Neutron News, 16 (3), 16 (2005). doi: 10.1080/10448630500454361
  9. A. И. Куклин, А. X. Исламов, Ю. С. Ковалев и др., Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 6, 74 (2006).
  10. Б. Н. Ананьев, А. Б. Кунченко, В. И. Лазин и др., Отчет ОИЯИ № 3-11502 (1978), http://inis.iaea.org/Search/search.aspx?orig_q=RN:9414980.
  11. Б. Н. Ананьев, Ю. М. Останевич и Е. Я. Пикельнер, Авт. свид. № 690959 от 14 июня 1979 г.
  12. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, et al., J. Phys.: Conf. Ser., 848 (1), 012020 (2017). doi: 10.1088/1742-6596/848/1/012020
  13. А. Г. Соловьев, Т. М. Соловьева, А. В. Стадник и др., Сообщения ОИЯИ, P10-2003-86 (2003).
  14. D. Pignol, L. Ayvazian, B. Kerfelec, et al., J. Biol. Chem., 275 (6), 4220 (2000). doi: 10.1074/jbc.275.6.4220
  15. T. Maruyama, M. Nakajima, S. Ichikawa, et al., Biosci. Biotechnol. Biochem., 65 (4), 1003 (2014). doi: 10.1271/BBB.65.1003
  16. R. H0iberg-Nielsen, P. Westh, and L. Arleth, Biophys. J., 96 (1), 153 (2009). doi: 10.1529/BIO- PHYSJ.108.136408
  17. M. Kozak, Biopolymers, 83 (6), 668 (2006). doi: 10.1002/BIP.20605
  18. D. E. Stephens, S. Singh, and K. Permaul, FEMS Microbiol. Lett., 293 (1), 42 (2009). doi: 10.1111/J.1574-6968.2009.01519.X
  19. N. P. Chandrasekharan, C. M. Ravenburg, I. R. Roy, etal., Acta Crystallogr. D: Struct. Biol., 76 (4), 357 (2020). doi: 10.1107/S2059798320002016
  20. T. Wu, Q. Jiang, D. Wu, et al., Food Chem., 274, 698 (2019). doi: 10.1016/J.FOODCHEM.2018.09.017
  21. A. Stradner, F. Cardinaux, and P. Schurtenberger, J. Phys. Chem. B, 110 (42), 21222 (2006). doi: 10.1021/JP0639804
  22. Q. Han, K. M. Smith, C. Darmanin, et al., J. Colloid Interface Sci., 585, 433 (2021). doi: 10.1016/J.JCIS.2020.10.024
  23. A. Stenstam, G. Montalvo, I. Grillo, and M. Gradzielski, J. Phys. Chem. B, 107 (44), 12331 (2003). doi: 10.1021/JP0352783
  24. H. Saibil, Nature Rev. Mol. Cell Biol., 14 (10), 630 (2013). doi: 10.1038/nrm3658
  25. V. V. Sudarev, S. M. Dolotova, S. M. Bukhalovich, et al., Int. J. Biol. Macromol., 224 (1), 319 (2022). doi: 10.1016/J.IJBIOMAC.2022.10.126
  26. E. Gnuchikh, A. Baranova, V. Schukina, et al., PLoS One, 14 (12), e0226576 (2019). doi: 10.1371/JOUR-NAL.PONE.0226576
  27. E. Y. Gnuchikh, I. V. Manukhov, and G. B. Zavilgelsky, Russ. J. Genet., 56 (9), 1070 (2020). doi: 10.1134/S1022795420090070
  28. M. N. Konopleva, S. A. Khrulnova, A. Baranova, et al., Biochem. Biophys. Res.Commun., 473 (4), 1158 (2016). doi: 10.1016/J.BBRC.2016.04.032
  29. G. B. Zavilgelsky, V. Y. Kotova, M. M. Mazhul', and I. V. Manukhov, Biochemistry (Moscow), 67 (9), 986 (2002). doi: 10.1023/A:1020565701210
  30. Е. Ю. Гнучих, И. В. Манухов и Г. Б. Завильгельский, Биотехнология, 36 (6), 68 (2020). doi: 10.21519/0234-2758-2020-36-6-68-77
  31. T. Inobe, M. Arai, M. Nakao, et al., J. Mol. Biol., 327 (1), 183 (2003). doi: 10.1016/S0022-2836(03)00087-1
  32. D. V. Zabelskii, A. V. Vlasov, Yu. L. Ryzhykau, et al., J. Phys.: Conf. Ser., 994 (1), 012017 (2018). doi: 10.1088/1742-6596/994/1/012017
  33. T. N. Murugova, A. V. Vlasov, O. I. Ivankov, et al., J. Optoelectron. Adv. Mater., 17, 1397 (2015).
  34. A. S. Kazantsev, A. V. Vlasov, Y. L. Ryzhykau, et al., J. Bioenerg. Biomembr., 50 (6), 548 (2018).
  35. A. Vlasov, A. Vlasova, S. Bazhenov, et al., in Proc. 2nd Int. Online Conf. on Crystals (Basel, Switzerland, 2020), p. 8466. doi: 10.3390/IOCC_2020-08466
  36. M. Balasoiu, S.V. Stolyar, R.S. Iskhakov, et al., Rom. J. Phys., 55 (7-8), 782 (2010).
  37. L. Anghel, M. Balasoiu, L. A. Ishchenko, et al., J. Phys.: Conf. Ser., 351 (1), 012005 (2012). doi: 10.1088/1742-6596/351/1/012005
  38. B. S. Pattni, V. V. Chupin, and V. P. Torchilin, Chem. Rev., 115 (19), 10938 (2015). doi: 10.1021/ACS.CHEMREV.5B00046
  39. A. E. Schmidt, A. V. Shvetsov, A. I. Kuklin, et al., Crystallogr. Rep., 61 (1), 149 (2016). doi: 10.1134/S1063774516010223
  40. V. V. Egorov, A. A. Shaldzhyan, A. N. Gorshkov, et al., J. Surf. Investig. 10 (2), 322 (2016). doi: 10.1134/S102745101602006 3
  41. T. Kondela, P. HrubovCdk, D. Soloviov, et al., Springer Proc. Physics, 266, 265 (2022). doi: 10.1007/978-3-030-80924-9_10
  42. O. M. Selivanova, A. K. Surin, Yu. L. Ryzhykau, et al., Langmuir, 34 (6), 2332 (2018). doi: 10.1021/acs.lang-muir.7b03393
  43. V. V. Egorov, Y. A. Zabrodskaya, D. V. Lebedev, et al., J. Phys.: Conf. Ser., 848 (1), 012022 (2017). doi: 10.1088/1742-6596/848/1/012022
  44. O. I. Ivankov, E. V. Ermakova, T. N. Murugova, et al., Adv. Biomembranes Lipid Self-Assembly, 31, 185 (2020). doi: 10.1016/BS.ABL.2020.02.002
  45. O. Ivankov, T. N. Murugova, E. V. Ermakova, et al., Sci. Rep., 11 (1), 1 (2021), doi: 10.1038/s41598-021-01347-7
  46. V. V. Kadochnikov, V. V. Egorov, A. V. Shvetsov, et al., Crystallogr. Rep., 61 (1), 98 (2016). doi: 10.1134/S1063774516010089
  47. Я. А. Забродская, Ю.Е. Горшкова, А.-П. С. Шурыгина и др., Кристаллография, 66 (6), 902 (2021). doi: 10.31857/S0023476121050258
  48. O. Ivankov, T. N. Murugova, E. V. Ermakova, et al., Sci. Rep., 11 (1), 1 (2021), doi: 10.1038/s41598-021-01347-7
  49. Y. L. Ryzhykau, Ph. S. Orekhov, M. I.Rulev, et al., Sci. Rep., 11 (1), 10774 (2021). doi: 10.1038/s41598-021-89613-6
  50. A. V. Vlasov, S. D. Osipov, N. A. Bondarev, et al., Cell. Mol. Life Sci., 79 (3), 1 (2022). doi: 10.1007/S00018-022-04153-0
  51. A. V. Vlasov, K. V. Kovalev, S.-H. Marx, et al., Sci. Rep., 9 (1), 18547 2019, doi: 10.1038/s41598-019-55092-z
  52. A. V. Vlasov, Y. L. Ryzhykau, V. I. Gordeliy, and A. I. Kuklin, FEBS J., 284 (s1), 87 (2017).
  53. G. V. Tsoraev, E. A. Protasova, E. A. Klimanova, et al., Struct. Dynamics, 9 (5), 054701 (2022). doi: 10.1063/4.0000164
  54. Y. V. Khramtsov, A. D. Vlasova, A. V. Vlasov, et al., Acta Crystallogr. D: Struct. Biol., 76 (12), 1270 (2020). doi: 10.1107/S2059798320013765
  55. A. I. Kuklin, A. V. Vlasov, Yu. L. Ryzhykau, et al., J. Bioenerg. Biomembr., 50 (6), 129 (2018).
  56. A. Vlasov, Y. Kovalev, Y. Ryzhykau, et al., FEBS J., 283 (S1), 218 (2016).
  57. J. M. Tokuda, S. A. Pabit, and L. Pollack, Biophys. Rev., 8 (2), 139 (2016). doi: 10.1007/S12551-016-0196-8/FIGURES/3
  58. T. R. Patel, G. Chojnowski, Astha, et al., Methods, 118-119, 146 (2017). doi: 10.1016/j.YMETH.2016.12.002
  59. J. Zhang, B. Liu, D. Gu, et al., Nucl. Acids Res., 49 (6), 3274 (2021). doi: 10.1093/NAR/GKAB150
  60. S. V. Bazhenov, E. S. Scheglova, V. V. Fomin, et al., Russ. J. Genetics 58 (2), 143 (2022). doi: 10.1134/S1022795422020028
  61. Г. Б. Завильгельский и И. В. Манухов, Генетика, 30 (3), 337 (1994).
  62. M. N. Konopleva, S. A. Khrulnova, A. Baranova, et al., Biochem. Biophys. Res.Commun., 473 (4), 1158 (2016). doi: 10.1016/J.BBRC.2016.04.032
  63. A. M. Stevens, Y. Queneau, L. Soulfere, et al., Chem. Rev., 111 (1), 4 (2011). doi: 10.1021/CR100064S
  64. Y. L. Ryzhykau, A. V. Vlasov, P. S. Orekhov, et al., Acta Crystallogr. D: Struct. Biol., 77 (11), 1386 (2021). doi: 10.1107/s2059798321009542
  65. Y. L. Ryzhykau, M. Y. Nikolaev, D. V. Zabelskii, et al., FEBS J., 284, 154 (2017).
  66. Yu. L. Ryzhykau, M. I.Rulev, D. V. Zabelskii, et al., J. Bioenerg. Biomembr., 50 (6), 577 (2018).
  67. Y. L. Ryzhykau, in Life Sciences at Frank Laboratory of Neutron Physics, Ed. by N. Kucerka, O. Culicov, D. Chudoba, et al. (Joint Institute for Nuclear Research, Dubna, 2021), pp. 12-13.
  68. V. Nazarenko, A. Remeeva, Yu. Ryzhykau, et al., FASEB J., 35 (S1), 05129 (2021). doi: 10.1096/FASE-BJ.2021.35.S1.05129
  69. C. R. Haramagatti, A. Islamov, H. Gibhardt, et al., Phys. Chem. Chem. Phys., 8 (8), 994 (2006). doi: 10.1039/B513588E
  70. N. Gorski, J. Kalus, A. I. Kuklin, and L. S. Smirnov, J. Appl. Cryst., 30 (5), 739 (1997). doi: 10.1107/S0021889897002860
  71. N. I. Gorski, A. N. Ivanov, A. I. Kuklin, and L. S. Smirnov, High Pressure Res., 14 (1-3), 215 (2006). doi: 10.1080/08957959508200922
  72. D. Soloviov, Y. Zabashta, L. Bulavin, et al., Macromol. Symp., 335 (1), 58 (2014). doi: 10.1002/MASY.201200122
  73. D. V. Solov'ev, A. I. Kuklin, P. K. Utrobin, et al., J. Surf. Investig., 5 (1), 7 (2011). doi: 10.1134/S1027451011010174
  74. D. V. Soloviov, L. Bulavin, V. I. Gordeliy, et al., Nucl. Phys. Atom. Energy, 13 (1), 83 (2012).
  75. D. V. Soloviov, Yu. E. Gorshkova, O. I. Ivankov, et al., J. Phys.: Conf. Ser., 351 (1), 012010 (2012). doi: 10.1088/1742-6596/351/1/012010
  76. V. V. Skoi, M. I.Rulev, A. S. Kazantsev, et al., J. Bioenerg. Biomembr., 50 (6), 584 (2018).
  77. M.Rulev, A. A. Pavlova, O. I. Ivankov, et al., J. Bioenerg. Biomembr., 50 (6), 569 (2018).
  78. R. Efremov, G. Shiryaeva, G. Bueldt, et al., J. Cryst. Growth, 275 (1-2), e1453 (2005). doi: 10.1016/J.JCRYSGRO.2004.11.235
  79. A. Ishchenko, L. Peng, E. Zinovev, et al., Cryst. Growth Des., 17 (6), 3502 (2017). doi: 10.1021/acs.cgd.7b00458
  80. T. N. Murugova, O. I. Ivankov, Yu. L. Ryzhykau, et al., Sci. Rep., 12 (1), 11109 (2022). doi: 10.1038/s41598-022-13945-0
  81. M. Nikolaev, E. Round, I. Gushchin, et al., Cryst. Growth Des., 17 (3), 945 (2017). doi: 10.1021/acs.cgd.6b01631
  82. A. Vlasov, et al., in Abstr. VII Eur. Conf. on Neutron Scattering (St-Petersburg, 2019), p. 631.
  83. A. V. Vlasov, et al., FEBS J., 282 (SI 1), 234 (2015).
  84. Yu. L. Ryzhykau, et al., FEBS J., 282 (SI 1), 235 (2015).
  85. A. V. Vlasov, N. L. Maliar, S. V. Bazhenov, et al., Crystals (Basel), 10 (1), 38 (2020). doi: 10.3390/cryst10010038
  86. G. M. Arzumanyan, N. V. Doroshkevich, K. Z. Mamatkulov, et al., J. Am. Chem. Soc., 138 (41), 13457 (2016). doi: 10.1021/jacs.6b04464
  87. V. Polovinkin, I. Gushchin, M. Sintsov, et al., J. Membrane Biol., 247 (9-10), 997 (2014). doi: 10.1007/s00232-014-9700-x
  88. R. Astashkin, K. Kovalev, S. Bukhdruker, et al., Nature Commun., 13 (1), 6460 (2022). doi: 10.1038/s41467-022-34019-9
  89. V. Borshchevskiy, K. Kovalev, E. Round, et al., Nature Struct. Mol. Biol., 29 (5), 440 (2022). doi: 10.1038/s41594-022-00762-2
  90. T. Balandin, D. Volkov, A. Alekseev, et al., Methods Mol. Biol., 2501, 109 (2022). doi: 10.1007/978-1-0716-2329-9_5
  91. T. I. Rokitskaya, N. L. Maliar, S. A. Siletsky, et al., Methods Mol. Biol., 2501, 259 (2022). doi: 10.1007/978-1-0716-2329-9_12
  92. K. Kovalev, R. Astashkin, V. Gordeliy, and V. Cherezov, Methods Mol. Biol., 2501, 125 (2022). doi: 10.1007/978-1-0716-2329-9_6
  93. A. Alekseev, V. Gordeliy, and E. Bamberg, Methods Mol. Biol., 2501, 71 (2022). doi: 10.1007/978-1-0716-2329-9_3
  94. A. V. Vlasov, Y. S. Kovalev, P. K. Utrobin, et al., Optoelectron. Adv. Mater., Rapid Commun., 11 (1-2), 65 (2017).
  95. T. B. Feldman, O. I. Ivankov, T. N. Murugova, et al., Dokl. Biochem. Biophys., 465, 420 (2016). doi: 10.1134/S1607672915060186
  96. T. B. Feldman, O. I. Ivankov, A. I. Kuklin, et al., Biochim. Biophys. Acta - Biomembranes, 1861 (10), 183000 (2019). doi: 10.1016/J.BBAMEM.2019.05.022
  97. V. I. Gordeliy, L. V. Golubchikova, A. I. Kuklin, et al., Prog. Colloid Polym. Sci., 93, 252 (1993).
  98. D. Uhrikova, N. Kucerka, A. Islamov, et al., Biochim. Biophys. Acta - Biomembranes, 1611 (1-2), 31 (2003). doi: 10.1016/S0005-2736(02)00705-8
  99. D. Uhrikova, P. Balgavy, N. Kucerka, et al., Biophys. Chem., 88 (1-3), 165 (2000). doi: 10.1016/S0301-4622(00)00211-8
  100. M. Belicka, N. Kucerka, D. Uhrikova, et al., Eur. Biophys. J., 43, 179 (2014). doi: 10.1007/S00249-014-0954-0
  101. S. Kurakin, O. Ivankov, V. Skoi, et al., Front. Mol. Biosci., 9, 680 (2022). DOI: 10.3389/ FMOLB.2022.926591/BIBTEX
  102. M. Herec, A. Islamov, A. Kuklin, et al., Chem. Phys. Lipids, 147 (2), 78 (2007). doi: 10.1016/J.CHEMPHYSLIP.2007.03.007
  103. J. Gallovd, D. Uhrikova, A. Islamov, et al., Gen. Physiol. Biophys., 23, 113 (2004).
  104. T. Murugova, O. Ivankov, E. Ermakova, et al., Gen. Physiol. Biophys., 39 (2), 135 (2020). doi: 10.4149/GPB_2019054
  105. I. J. Vereyken, V. Chupin, A. Islamov, et al., Biophys. J., 85 (5), 3058 (2003). doi: 10.1016/S0006-3495(03)74724-9
  106. E. V. Bocharov, K. S. Mineev, P. E. Volynsky, et al., J. Biol. Chem., 283 (11), 6950 (2008). doi: 10.1074/jbc.M709202200
  107. A. Kuklin, D. Zabelskii, I. Gordeliy, et al., Sci. Rep., 10 (1), 5749 (2020). doi: 10.1038/s41598-020-62577-9
  108. Y. E. Gorshkova, A. I. Kuklin, and V. I. Gordeliy, J. Surf. Investig. 11 (1), 27 (2017). doi: 10.1134/S1027451016050499
  109. S. A. Kurakin, E. V. Ermakova, A. I. Ivankov, et al., J. Surf. Investig. 15 (2), 211 (2021). doi: 10.1134/S1027451021020075
  110. N. Kucerka, E. Ermakova, E. Dushanov, et al., Langmuir, 37 (1), 278 (2021). doi: 10.1021/ACS.LANG-MUIR.0C02876
  111. T. N. Murugova, I. M. Solodovnikova, V. I. Yurkov, et al., Neutron News, 22 (3), 11 (2011). doi: 10.1080/10448632.2011.598800
  112. T. N. Murugova, V. I. Gordeliy, A. K. Islamov, et al., Biochim. Biophys. Acta, 14, 524 (2006).
  113. Т. Н. Муругова, В. И. Горделий, А. И. Куклин и др., Кристаллография, 52 (3), 545 (2007).
  114. T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, et al., Crystallogr. Rep. 52, 521 (2007). doi: 10.1134/S1063774507030339
  115. T. N. Murugova, V. I. Gordeliy, A. K. Islamov, et al., Materials Structure, 13 (2), 68 (2006).
  116. A. Y. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, Phys. Rev. E, 106 (2), 024108 (2022). doi: 10.1103/PHYSREVE.106.024108
  117. M. Balasoiu and G. M. Arzumanyan, Modern Trends in Nanoscience (Editura Academiei Romane, Bucharest, 2013).
  118. В. В. Исаев-Иванов и др., Физика твердого тела, 52 (5), 996 (2010).
  119. D. V. Lebedev, Ya. A. Zabrodskaya, V. Pipich, et al., Biochem. Biophys. Res.Commun., 520 (1), 136 (2019). doi: 10.1016/J.BBRC.2019.09.116
  120. D. V. Lebedev, M. V. Filatov, A. I. Kuklin, et al., Crystallogr. Rep., 53 (1), 110 (2008). doi: 10.1134/S1063774508010136
  121. A. Y. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, Phys. Rev. E, 84 (3), 036203 (2011). doi: 10.1103/PHYSREVE.84.036203
  122. E. M. Anitas, V. A. Osipov, A. I. Kuklin, and A. Yu. Cherny, Rom. J. Phys., 61 (3-4), 457 (2016).
  123. A. Yu. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, Rom. J. Phys, 60 (5-6), 658 (2015).
  124. A. Y. Cherny, E. M. Anitas, A. I. Kuklin, et al., J. Surf. Investig. 4 (6), 903 (2010). DOI: 10.1134/ S1027451010060054
  125. A. Y. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, J. Appl. Crystallogr., 50 (3), 919 (2017). doi: 10.1107/S1600576717005696
  126. A. Y. Cherny, E. M. Anitas, A. I. Kuklin, et al., J. Appl. Crystallogr., 43 (4), 790 (2010). doi: 10.1107/S0021889810014184
  127. A. Y. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, Phys. Chem. Chem. Phys., 19 (3), 2261 (2017). doi: 10.1039/C6CP07496K
  128. A. Y. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, J. Appl. Crystallogr., 47 (1), 198 (2014). doi: 10.1107/S1600576713029956
  129. E. M. Anitas, I. Bica, R. V. Erhan, et al., Rom. Journ. Phys., 60 (5-6), 653 (2015).
  130. A. I. Kuklin, A. I. Ivankov, D. V. Soloviov, et al., J. Phys. Conf. Ser., 994 (1), 012016 (2018). doi: 10.1088/1742-6596/994/1/012016
  131. A. I. Kuklin, T. N. Murugova, O. I. Ivankov, et al., J. Phys. Conf. Ser., 351 (1), 012009 (2012). doi: 10.1088/1742-6596/351/1/012009
  132. D. V. Lebedev, D. M. Baitin, A. Kh. Islamov, et al., FEBS Lett., 537 (1-3), 182 (2003). doi: 10.1016/S0014-5793(03)00107-8

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies