Numerical modeling of pre-spawning and spawning migrations of the representative of the family hexagrammidae: the case of the arabesque greenling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a spatio-temporal model of greenling dynamics during pre-spawning and spawning mass migrations. The developed model is based on original verified long-term observations and data on industrial fishing in the Peter the Great Bay (Sea of Japan), and the equations of the dynamics of the density of males/females and the mass daily movements of fish are written in terms of the transfer equations. These equations are written in the form of the modified Patlak-Keller-Segel equations, according to which the flow of objects/substances is directed along the gradients of stimulus introduced. It is believed that in the pre-spawning season, adaptation in morpho-physiological (biochemical thermoregulation and a number of other endogenous processes) and behavioral responses of fish to sufficiently long and energy-consuming spawning can occur, where the stimulus for mass movements of fish is optimal environmental conditions for spawning events. During the spawning period, selected sites will be found in convenient and well-aerated embayments located at the bottom of reservoir in the coastal area. Modeling of stimuli-related movements is performed based on information about the preferred water depths of the fish's pre-spawning area and relevant features relating to a selection of suitable bedding sites. It is assumed that the intensity of daily motion is proportional to their linear size (the larger the fish becomes, the faster it is). The equations for the spawning stage take into account the spatial competition of males, but in natural conditions it is observed only in the vicinity of spawning areas. Being away from these areas, males continued to look for new sites good for the spawn. For females, their movement is provoked by males that assembled in schools, the signal of which can be certain chemical elements released by males (for example, mucus secretion from males) or visual contact. The diffusion of fish distribution and the viscosity of the habitat (velocity diffusion) are taken into account. The initial distribution of fish is given according to the average distribution of fish in July over a long-term observation period in the Peter the Great Bay.

About the authors

A. N Chetirbotsky

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: chetyrbotsky@yandex.ru
Vladivostok, Russia

A. N Vdovin

Pacific Branch of Research Institute of Fishery and Oceanography (“TINRO”)

Vladivostok, Russia

V. A Chetirbotsky

Lomonosov Moscow State University

Moscow, Russia

References

  1. В. В. Абрамов, Зоологич. журн., 32 (6), 1198 (1953).
  2. С. И. Павлов, Изв. Самарского науч. центра РАН, 11 (1), 34 (2009).
  3. A. Toleuchanov, M. Panfilov, and A. Karatauev, in Communications in Computer and Information Science. Mathematical Modeling in Technological Processes (Springer, 2015), Vol. 549, pp. 177-189.
  4. Ю. Н. Тютюнов, А. Д. Загpебнева, Ф. А. Cуpков и А. И. Азовcкий, Биофизика, 54, (3), 508 (2009).
  5. N. Takajoshi, Res. Popul. Ecd., 35 (1), 45 (1993).
  6. В. Н. Говорухин, А. Б. Моргулис и Ю. В. Тютюнов, Докл. РАН, 372 (6), 730 (2000).
  7. E. F. Keller and L. A. Segel, J. Theor. Biol., 30, 225 (1971).
  8. А. В. Никитина, Изв. ЮФУ. Технические науки, № 7 (96), 173 (2009).
  9. Y. V. Tyutyunova, L. I. Titovab, and I. N. Senina, Ecol. Complexity 31, 170 (2017).
  10. В. Н. Говорухин и А. Д. Загребнева, Компьютерные исследования и моделирование, 12 (4), 831 (2020).
  11. А. Б. Моргулис и К. К. Ильин, Вестн. ВГУ. Сер. Физика. Математика, № 2, 114 (2019).
  12. А. Б. Моргулис, Вестн. ЮУрГУ. Сер. "Математика. Механика. Физика", 11 (3), 28 (2019).
  13. В. Н. Гомелюк, Вопросы ихтиологии, 27 (6), 991 (1987).
  14. R. De Graaf and P. Dam, in Salish Sea Ecosystem Conf. (2014) p. 6. https://cedar.wwu.edu/ssec/2014ssec/Day1/6.
  15. W. E. Ricker, Computation and Interpretation of Biological Statistics of Fish Populations. Bull. 191 (Ottawa, 1975).
  16. А. Н. Колмогоров, в сб. Теория вероятностей и математическая статистика (Наука, М., 1986).
  17. А. Н. Вдовин, Изв. ТИНРО, 123, 16 (1998).
  18. M. D. Robarts and J. F. Piatt, J. Fish Biol., 54 (5), 1050 (2005).
  19. А. Н. Вдовин и А. Н. Четырбоцкий, Труды ВНИРО, 170, 26 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».