Comparison of the dynamics of DNA damage in blood leukocytes and survival of mice after total body irradiation with Bragg peak carbon ions or x-rays

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study has determined a survival rate of mice irradiated with accelerated carbon ions (450 MeV/nucleon) in the Bragg peak or X-ray at a dose of 6.5 Gy, using the comet assay. Levels of DNA damage (%TDNA) in blood leukocytes from mice were measured 1 day before, 1-23 days after exposure to carbon ions and 1-28 days after exposure to X-ray radiation at the same dose. According to survival and % TDNA parameters, it was found that a damaging effect of carbon ions is greater than that of X-rays and substantial variations in % TDNA, which occur in individual animals, could appear to cause individual differences in the development of genome instability in the long term. It is assumed that a higher % TDNA in leukocytes after carbon ion exposure compared to that of X-rays, a wide range of variations and asynchronous changes in individuals in the post-irradiation period are associated with the induction of clustered DNA damages and mitochondrial dysfunction, and are also due to genetic and epigenetic factors. The results obtained point to the need to assess the state of blood leukocytes in animals with a heterogeneous genetic background using the comet assay before irradiation in order to form a group with similar %TDNA values. The revealed differences in individual laboratory animals require further study in order to improve animal models in the light of the development of personalized biomedicine.

About the authors

E. A Kuznetsova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: kuzglu@rambler.ru
Pushchino, Moscow Region, Russia

O. M Rozanova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

E. N Smirnova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

S. I Glukhov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

T. V Sirota

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

T. A Belyakova

Physical-Technical Center of Lebedev Physical Institute, Russian Academy of Sciences

Protvino, Moscow Region, Russia

N. P Sirota

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

References

  1. O. Mohamad, B. J. Sishc, J. Saha, et al., Cancers, 9, 66 (2017). doi: 10.3390/cancers9060066
  2. M. Moreno-Villanueva, M. Wong, T. Lu, et al., npj Microgravity, 3, 14 (2017). doi: 10.1038/s41526-017-0019-7
  3. I. Vavitsas and K. Kalachani, AIP Conf. Proc., 2075, 200018 (2019). doi: 10.1063/1.5099028
  4. S. Muralidharan, S. P. Sasi, M. A. Zuriaga, et al., Front. Oncol., 5, 231 (2015). doi: 10.3389/fonc.2015.00231
  5. E. I. Azzam, J. P. Jay-Gerin, and D. Pain, Cancer Lett., 327, 48 (2012). doi: 10.1016/j.canlet.2011.12.012
  6. A. R. Collins, A. A. Oscoz, G. Brunborg, et al., Mutagenesis, 23 (3), 143 (2008).
  7. E. A. Kuznetsova, N. P. Sirota, I. Y. Mitroshina, et al., Int. J. Radiat. Biol., 96 (10), 1245 (2020). doi: 10.1080/09553002.2020.1807640
  8. E. A. Kuznetsova., A. R. Dyukina, I. A. Chernigina, et al., Bull. Eksperim. Biologii i Meditsiny, 155 (6), 757 (2013). doi: 10.1007/s10517-013-2245-7
  9. N. K. Chemeris, A. B. Gapeyev, N. P. Sirota, et al., Mutat. Res., 558, 27 (2004).
  10. D. P. Lovell and T. Omori, Mutagenesis, 23 (3), 171 (2008).
  11. K. Datta, S. Suman, B. V. Kallakury, et al., PLoS One, 7 (8), e42224 (2012). doi: 10.1371/journal.pone.0042224
  12. А. И. Газиев, Радиационная биология. Радиоэкология, 39 (6), 630 (1999).
  13. M. H. Lankinen, L. M. Vilpo, and J. A. Vilpo, Mutat. Res., 352 (1-2), 31 (1996).
  14. J. M. Danforth, L. Provencher, and A. A. Goodarzi, Front. Cell Dev. Biol., 10, 910440 (2022). doi: 10.3389/fcell.2022.910440
  15. S. Kobashigawa, K. Suzuki, and S. Yamashita, Biochem. Biophys. Res. Commun., 414, 795 (2011).
  16. K. I. Matsumoto and M. Ueno, Y Shoji et al., Free Radic. Res., 55 (4), 450 (2021). doi: 10.1080/10715762.2021.1899171
  17. D. Averbeck and C. Rodriguez-Lafrasse, Int. J. Mol. Sci., 22 (20), 11047 (2021). doi: 10.3390/ijms222011047.
  18. R. B. Richardson and M. E. Harper, Oncotarget, 7 (16), 21469 (2016). doi: 10.18632/oncotarget.7412
  19. N. Chatterjee and G. C. Walker, Environ. Mol. Mutagen., 58 (5), 235 (2017). doi: 10.1002/em.22087
  20. http://www.andreevka.msk.ru/product.htm
  21. W. Tinganelli and M. Durante, Cancers (Basel), 12 (10), 3022 (2020). doi: 10.3390/cancers12103022

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies