Model of lipid diffusion in cytoplasmic membranes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analytical model of lateral lipid diffusion in heterogeneous native cytoplasmic membranes is presented. The Fourier transform method was used to solve the diffusion equation for the coordinate distribution function of lipids in a periodically inhomogeneous membrane, in which the diffusion coefficient is described by a harmonic function of the coordinates. It is shown that advection and diffusion are present in membrane. The model explains different types of lipid diffusion in membrane observed previously in experiments as a result of structural transitions of periodically located fixed protein-lipid domains associated with the spectrin-actin-ankyrin network. If these domains are the same, then super- and subdiffusion can be seen in experiments, when the mean square displacement of lipids depends non-linearly on time, and their average displacement is zero. Drift during advection was less than the chaotic Brownian displacement of lipids, advection was not observed in the experiment. When not all membrane proteins associated with the spectrin-actin-ankyrin network undergo conformational change in the same way upon ligand binding, two periodic sublattices of inhomogeneities arise in the membrane from fixed protein-lipid domains around membrane proteins associated with the cytoskeleton and nested in one another. In this case, hop diffusion can be found in experiments, when periods of nonlinear diffusion of molecules are replaced by periods of advection-diffusion, in which the average displacement of molecules is not zero. Advection is local in nature and occurs near individual protein-lipid domains. In the presented work, criteria are analytically obtained under which hop diffusion is experimentally observed in a periodically inhomogeneous membrane.

About the authors

P. V Mokrushnikov

Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN)

Email: pavel.mokrushnikov@bk.ru
Novosibirsk, Russia

V. Ya Rudyak

Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN);Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences;Novosibirsk State University

Novosibirsk, Russia

References

  1. K. Suzuki, K. Ritchie, E. Kajikawa, et al., Biophys. J., 88 (5), 3659 (2005).
  2. R. G. Parton and M. A. del Pozo, Nat. Rev. Mol. Cell Biol., 14 (2), 98 (2013).
  3. P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. USA, 72, 3111 (1975).
  4. E. P. Petrov and P. Schwille, Biophys. J., 94 (5), 45 (2008).
  5. П. В. Мокрушников, Л. Е. Панин, В. Е. Панин и др., Структурные переходы в мембранах эритроцитов (экспериментальные и теоретические модели) (НГАСУ, Новосибирск, 2019).
  6. T. Fujiwara, K. Ritchie, H. Murakoshi, et al., J. Cell Biol., 157 (6), 1071 (2002).
  7. T. K. Fujiwara, K. Iwasawa, Z. Kalay, et al., Mol. Biol. Cell, 27 (7), 1101 (2016).
  8. P. F. Lenne, L. Wawrezinieck, F. Conchonaud, et al., EMBO J., 25 (14), 3245 (2006).
  9. A. Honigmann, S. Sadeghi, J. Keller, et al., Elife, 3, e01671 (2014).
  10. M. Renner, Y. Domanov, F. Sandrin, et al., PLoS One, 6 (9), e25731 (2011).
  11. A. Einstein, Annal. Der Physik, 322(8), 549 (1905).
  12. K. Ayscough, Methods Enzymol., 298,18 (1998).
  13. G. I. Mashanov, T. A. Nenasheva, A. Mashanova, et al., Faraday Discuss., 232, 358 (2021).
  14. M. N. Costa, K. Radhakrishnan, and J. S. Edwards, J. Biotechnol., 151 (3), 261 (2011).
  15. Y. A. Domanov, S. Aimon, G. E. S. Toombes, et al. Proc. Natl. Acad. Sci. USA, 108 (31), 12605 (2011).
  16. O. A. Dvoretskaya and P. S. Kondratenko, J. Exp. Theor. Physics, 116, 698 (2013).
  17. P. S. Kondratenko and A. L. Matveev, J. Exp. Theor. Physics, 157 (4), 703 (2020).
  18. G. J. Wang and N. G. Hadjiconstantinou, Langmure, 34 (23), 6976 (2018).
  19. V. Andryushchenko and V. Rudyak, Defect and Diffusion Forum 312-315, 417 (2011).
  20. V. A. Andryushchenko and V. Ya. Rudyak, Reports of the Academy of Sciences of the Higher School of the Russian Federation, 2 (15), 6 (2010).
  21. В. Я. Рудяк, Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика (НГАСУ. Новосибирск, 2005).
  22. S. J. Singer and G. L. Nicolson, Science, 175, 720 (1972).
  23. G. L. Nicolson, Biochim. Biophys. Acta, 457 (1), 57 (1976).
  24. P. V. Mokrushnikov, in Lipid Bilayers: Properties, Behavior and Interactions, Ed. by M. Ashrafuzzaman (Nova Science Publishers, NY, 2019), pp. 43-91.
  25. J. Morel, S. Claverol, S. Mongrand, et al, Mol. Cell Proteomics, 5 (8), 1396 (2006).
  26. S.-C. Liu, L. H. Derick, J. Palek, Journal of cell biology 104, 527 (1987).
  27. L. E. Panin, P. V. Mokrushnikov, V. G. Kunitsyn, and B. N. Zaitsev, J. Phys. Chem. B, 114, 9462 (2010).
  28. L. E. Panin, P. V. Mokrushnikov, V. G. Kunitsyn, and B. N. Zaitsev, J. Phys. Chem. B, 115, 14969 (2011).
  29. V. Yа. Rudyak and A. A. Belkin, Doklady Physics, 59, 604 (2014).
  30. V. Yа. Rudyak and A. A. Belkin, Nanosystems: Physics, Chemistry, Mathematics 6 (3), 366 (2015).
  31. V. Yа. Rudyak and A. A. Belkin, Nanosystems: Physics, Chemistry, Mathematics 9 (3), 349 (2018).
  32. Л. Е. Панин, П. В. Мокрушников, Вестн. Новосибирского гос. пед. ун-та, 5 (15), 101 (2013).
  33. P. V. Mokrushnikov, A. N. Dudarev, T. A. Tkachenko, et al., Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology, 11 (1), 48 (2017).
  34. L. E. Panin, P. V. Mokrushnikov, V. G. Kunitsyn, et al., Phys. Mesomechanics, 14 (3-4), 167 (2011).
  35. P. V. Mokrushnikov, L. E. Panin, N. S. Doronin, et al., Biophysics, 56 (6), 1074 (2011).
  36. P. V. Mokrushnikov, Biophysics, 65 (1), 65 (2020).
  37. A. I. Kozelskaya, A. V. Panin, I. A. Khlusov, et al, Toxicol. in Vitro, 37, 34 (2016).
  38. P. V. Mokrushnikov, J. Physics: Conf. Ser. The Conf. Proc. STS35 (Kutateladze Institute of Thermophysics, Sib. Branch of the RAS), 012161 (2019).
  39. P. V. Mokrushnikov, E. V. Lezhnev, and V. Ya. Rudyak, AIP Conf. Proc., 2351, 040054 (2021).
  40. P. V. Mokrushnikov, V. Ya. Rudyak, and E. V. Lezhnev, Nanosystems: Physics, Chemistry, Mathematics, 12 (1), 22 (2021).
  41. L. E. Panin and P. V. Mokrushnikov, Biophysics, 59 (1), 127 (2014).
  42. P. V. Mokrushnikov, L. E. Panin, and B. N. Zaitsev, Gen. Physiol. Biophys., 34 (3), 311 (2015).
  43. P. V. Mokrushnikov, Biophysics, 62 (2), 256 (2017).
  44. Л. Е. Панин, П. В. Мокрушников, Р. А. Князев и др., Атеросклероз, 6, 12 (2012).
  45. В. Г. Куницын, П. В. Мокрушников, Л. Е. Панин, Бюл. Сибирского отделения РАМН, 5 (127), 28 (2007).
  46. П. В. Мокрушников, Бюл. Сибирского отделения РАМН, 1 (147), 38 (2010).
  47. О. Н. Потеряева, Г. С. Русских, П. В. Мокрушников. Вестн. Уральской мед. акад. науки, 48 (2), 149 (2014).
  48. П. В. Мокрушников, Л. П. Осипова, Т. В. Гольцова и А. А. Розуменко, Якутский мед. журн. 54 (2), 15 (2016).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies