Induction of damage to the dna structure of tumor cells by aurum polyacrylate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ability of aurum polyacrylate (aurumacryl) to cause changes in the DNA structure of tumor cells (culture of MCF-7 human breast cancer cells) was studied. It was established that the molecular mechanism under- lying the effects of aurumacryl on tumor cells is associated with the induction of single-strand breaks and cross-links in the DNA molecule. At the same time, it was shown that aurumacryl can reduce the number of spontaneous, or irradiated, DNA double-strand breaks in MCF-7 cells.

About the authors

A. K Chigasova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

L. A Ostrovskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: larros@list.ru
Moscow, Russia

D. B Korman

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

References

  1. Д. Б. Корман, Л. А. Островская, Н. В. Блюхтерова и др., Биофизика, 66 (6), 1229 (2021). doi: 10.31857/S000630292106020X
  2. Д. Б. Корман, Л. А. Островская и В. А. Кузьмин, Вопр. онкологии, 64 (6) 697 (2018).
  3. Л. А. Островская, Д. Б. Корман, Н. В. Блюхтерова и др., Хим. физика, 38 (12), 64 (2019).
  4. Л. А. Островская, Д. Б. Корман, Н. В. Блюхтерова и др., Росс. биотерапевтич. журн., 19 (4), 74 (2020).
  5. Л. А. Островская, Д. Б. Корман, Е. И. Некрасова и др., Биофизика, 66 (5), 978 (2021). doi: 10.31857/S0006302921050161
  6. Л. А. Островская, Д. Б. Корман, Е. И. Некрасова и др., Биофизика, 67 (1), 82 (2022). doi: 10.31857/S0006302922010070
  7. Д. Б. Корман. Мишени и механизмы действия противоопухолевых препаратов (Практическая медицина, М., 2014).
  8. Л. А. Островская, Д. Б. Корман, А. К. Грехова и др., Биофизика, 62 (3), 598 (2017). doi: 10.1134/S0006350917030150
  9. Д. Б. Корман, Л. А. Островская и В. А. Кузьмин, Биофизика, 64 (3), 552 (2019). doi: 10.1134/S0006350919030102
  10. L. Messori, P. Orioli, C. Tempi, et al., Biochem. Biophys. Res.Commun., 221, 852 (2001). doi: 10.1006/bbrc.2001.4348
  11. P. Shi, Q. Jiceng, Y. Zhao, et al., J. Biol. Inorg. Chem., 11, 745 (2006). doi: 10.1007/s00755-006-0120-y
  12. M. S. Alsaeedi, B. A. Babgi, M. A. Hussein, et al., Molecules, 25, 1933 (2020). doi: 10.3390/j.molecules 25051033
  13. B. Possato, L. R. Dalmolin, L. M. Pereira, et al., Eur. J. Pharm. Sci., 162, 105834 (2021). doi: 10.1016/j.ejps.2021.105834
  14. C. K. Mirabelli, J. B. Zimmerman, H. R. Bartus, et al., Biochem. Pharmacol., 35, 1435 (1986). doi: 10.1016/0006-2952(86)90107-3
  15. S. Bestgen, C. Seide, T. Wiesher, et al., Chemistry, 23, 6315 (2017). doi: 10.1002/chem.201605337

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies