Use of peroxiredoxin 6 to prevent liver dysfunction in acute kidney injury

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Acute kidney injury causes deterioration of liver function, that is a confounding factor affecting treatment outcomes. In this work, renal ischemia reperfusion injury was used as a model. Taking into account that hyperproduction of reactive oxygen species is the major risk factor for kidney damage, the exogenous antioxidant enzyme peroxiredoxin 6, able to neutralize reactive oxygen species, has been used to prevent liver damage when kidneys are damaged. Kidney injury was initiated by a 45-minute ischemia simultaneously with a left-sided donor nephrectomy without manipulations of the liver. Peroxiredoxin 6 was administered intravenously 15 minutes before ischemia. The functional state of the liver was assessed after 2, 5 and 24 hours of reperfusion using histological and biochemical analysis. The signs of liver damage were detected in the best possible way after 5 hours of kidney reperfusion. It was found that peroxiredoxin 6 helps reduce the severity of the vascular reaction and leukocyte infiltration in the liver; lower the level of dystrophy and apoptosis of hepatocytes; keep the concentration of TBA-reactive products even and stabilize the level of cytokines, IL-6 and IL-10, in the liver tissue, as well as normalize the activity of intracellular transferases in the blood at the onset of reperfusion. The protective effect of peroxiredoxin 6 is associated primarily with its antioxidant properties, due to which hyperproduction of reactive oxygen species can be neutralized in the early phase of kidney reperfusion, but the signal-regulatory function of the protein can also contribute to a protective role peroxiredoxin 6.

About the authors

A. E Gordeeva

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

E. A Kurganova

Pushchino State Natural Science Institute

Pushchino, Moscow Region, Russia

V. I Novoselov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: novoselov-vi@rambler.ru
Pushchino, Moscow Region, Russia

References

  1. K. Lane, J. J. Dixon, I. MacPhee, et al., Nephrol. Dial. Transplant., 28 (17), 1634 (2013).
  2. M. E. Grams and H. Rabb, Kidney Int., 81 (10), 942 (2012).
  3. F. Golab, M. Kadkhodaee, M. Zahmatkesh, et al., Kidney Int., 8, 783 (2009).
  4. А. Ю. Николаев, Эффективная фармакотерапия, 44, 22 (2013).
  5. S. W. Park, S. W. C. Chen, M. Kim, et al., Lab. Invest., 91, 63 (2011).
  6. Y. Shang, S. M. Hewage, Ch. U. B. Wijerathne, et al., Front. Med. (Lausanne) 7, 201 (2020).
  7. J. V. Bonventre and A. Zuk, Kidney Int., 66, 480 (2004).
  8. M. Serteser, T. Koken, A. Kahraman, et al., FACS J. Surg. Res., 107, 234 (2002).
  9. E. Y. Plotnikov, A. V. Kazachenko, M. Y. Vyssokikh, et al., Kidney Int., 72 (12), 1493 (2007).
  10. E. Fadillioglu, Z. Kurcer, H. Parlakpinar, et al., Arch. Pharm. Res., 31 (6), 705 (2008).
  11. M. H. Emre, H. Erdogan, and E. Fadillioglu, Gen. Physiol. Biophys., 25, 195 (2006).
  12. А. Е. Гордеева, Э. А. Курганова и В. И. Новоселов, Биофизика, 66 (5) 985 (2021).
  13. Z.-Y. Fu, Z.-J. Wu, J.-H. Zheng, et al., Drug Design Dev. Therapy, 14, 175 (2020).
  14. J. Kaur, T. Kaur, et al., Drug Dev. Res., 82, 412 (2021).
  15. М. Г. Шарапов, А. Е. Гордеева и др., Биофизика, 62, 1208 (2017).
  16. М. Г. Шарапов, Е. Е. Фесенко, В. И. Новоселов, Биофизика, 63, 734 (2018).
  17. Y. Manevich, T. Shuvaeva, et al., Arch. Biochem. Biophys., 485, 139 (2009).
  18. M. G. Sharapov, P. V. Glushkova, et al. Arch. Biochem. Biophys., 702, 108830 (2021).
  19. R. L. Metha, J. Bouchard, et al., Intensive Care Med., 37, 241 (2011).
  20. Ostermann and R. W. Chang, Crit. Care, 13, 142 (2009).
  21. T. Shoji, A. Wada, K. Inoue, et al., Nephron, 105, 99 (2007).
  22. N. Salem, E. A. Salem, A. M. Maarouf, et al., Ren. Fail., 32 (8), 959 (2010).
  23. A. Baquerizo, D. Anselmo, and C. Shackleton, Transplantation, 75 (12) 2007 (2003).
  24. Z. T. Rosenkrans, T. Sun, D. Jiang, et al., Adv. Sci., 7, 2000420 (2020).
  25. K. Minami, S. Bae, H. Uehara, et al. Am. J. Transpl., 20, 1527 (2020).
  26. R. G. Goncharov, K. A. Rogov, A. A. Temnov, et al., Cell Tissue Res., 378 (2), 319 (2019).
  27. X. Wang, S. A. Phelan, K. Forsman-Semb, et al., J. Biol. Chem., 278, 25179 (2003).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies