Salts of short-chain fatty acids increase the activity of the large conductance, Ca2+-activated K+ channels and reduce calcium oscillations in rat GH3 cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The short-chain fatty acids such as acetic, propionic and butyric acids are microbiota metabolites that can exert a series of physiological effects both in the intestine and other organs, including the central nervous system. The present work aimed to examine the effects of sodium acetate, propionate, and butyrate on the activity of large conductance Ca2+ activated K+ channels and calcium oscillations in rat pituitary GH3 cells. It has been shown that fatty acids under study cause a dose-dependent increase in the amplitude of total outward potassium currents and these effects are prevented by tetraethylammonium, a Ca2+ activated K+ channel blocker, indicating the involvement of Ca2+ activated K+ channels in the effects of fatty acids. It is worthy of note that fatty acids increased open probability of single channels with no changes in the amplitude and the mean channel open time. In addition, fatty acids were associated with a significant reduction in the amplitude and frequency of Ca2+ oscillations in GH3 cells. An increase in potassium conductance and a decrease in the intracellular Ca2+ level can mediate the effects of short-chain fatty acids in various excitable structures, such as a relaxation of intestinal and vascular smooth muscle cells, hyperpolarization of neurons, and the regulation of hormone and neurotransmitter release.

About the authors

I. F Shaidullov

Kazan (Volga region) Federal University

Email: guzel.sitdikova@kpfu.ru
Kazan, Republic of Tatarstan, Russia

E. V Ermakova

Kazan (Volga region) Federal University

Email: guzel.sitdikova@kpfu.ru
Kazan, Republic of Tatarstan, Russia

D. M Sorokina

Kazan (Volga region) Federal University

Email: guzel.sitdikova@kpfu.ru
Kazan, Republic of Tatarstan, Russia

O. V Yakovleva

Kazan (Volga region) Federal University

Author for correspondence.
Email: guzel.sitdikova@kpfu.ru
Kazan, Republic of Tatarstan, Russia

G. F Sitdikova

Kazan (Volga region) Federal University

Email: guzel.sitdikova@kpfu.ru
Kazan, Republic of Tatarstan, Russia

References

  1. G. Den Besten, K. Van Eunen, A. K. Groen, et al., J. Lipid Res., 54, 2325 (2013).
  2. S. Deleu, K. Machiels, J. Raes, et al., EBioMedicine, 66, 103293 (2021).
  3. E. Hosseini, C. Grootaert, W. Verstraete, and T. Van de Wiele, Nutr. Rev., 69, 245 (2011).
  4. D. P. Venegas, M. K. De La Fuente, G. Landskron, et al., Front. Immunol., 10, 277 (2019).
  5. E. Stachowska, M. W. Kniewska, A. Dziezyc, and A. Bohatyrewicz, Eur. Rev. Med. Pharmacol. Sci., 25, 4570 (2021).
  6. D. L. Topping and P. M. Clifton, Physiol. Rev., 81, 1031 (2001).
  7. S. Fukuda, H. Toh, K. Hase, et al., Nature, 469, 543 (2011).
  8. A. L. Kau, P. P. Ahern, N. W. Griffin, et al., Nature, 474, 327 (2011).
  9. K. M. Maslowski, A. T. Vieira, A. Ng, et al., Nature, 461, 1282 (2009).
  10. N. R. Hurst, D. M. Kendig, K. S. Murthy, and J. R. Grider, Neurogastroenterol. Motil., 26, 1586 (2014).
  11. E. Suply, P. de Vries, R. Soret, et al., Am. J. Physiol. -Gastrointest. Liver Physiol., 302, G1373 (2012).
  12. I. F Shaidullov, D. M. Sorokina, F. G. Sitdikov, et al., BMC Gastroenterol., 21, 1 (2021).
  13. F. Fan, Y. Chen, Z. Chen, et al., Mol. Pain., 17 (2021).
  14. W. Zhang, X. Feng, Y. Zhang, et al., J. Cell. Mol. Med., 24, 3192 (2020).
  15. N. Natarajan and J. L. Pluznick, Am. J. Physiol. - Cell Physiol., 307, C979 (2014).
  16. J. L. Pluznick, Gut Microbes., 5, 202 (2013).
  17. N. Natarajan, D. Hori, S. Flavahan, et al., Physiol. Genomics, 48, 826 (2016).
  18. S. Kim, R. Goel, A. Kumar, et al., Clin. Sci., 132, 701 (2018).
  19. F. Z. Marques, E. Nelson, P. Y. Chu, et al., Circulation, 135, 964 (2017).
  20. W. H. Oldendorf, Am. J. Physiol., 224, 1450 (1973).
  21. Y. P. Silva, A. Bernardi, and R. L. Frozza, Front. Endocrinol. (Lausanne), 11, 25 (2020).
  22. B. Dalile, L. Van Oudenhove, B. Vervliet, and K. Verbeke, Nat. Rev. Gastroenterol. Hepatol., 16, 461 (2019).
  23. G. Haschke, H. Schafer, and M. Diener, Neurogastroenterol. Motil., 14, 133 (2002).
  24. S. A. Hamodeh, M. Rehn, G. Haschke, and M. Diener, Neurogastroenterol. Motil., 16, 597 (2004).
  25. R. Nitschke, N. Benning, S. Ricken, et al., Pflugers Arch. Eur. J. Physiol., 434, 466 (1997).
  26. S. Ghatta, I. Lozinskaya, Z. Lin, et al., Eur. J. Pharmacol., 563, 203 (2007).
  27. G. F. Sitdikova, T. M. Weiger, and A. Hermann, Pflugers Arch. Eur. J. Physiol., 459, 389 (2010).
  28. K. D. Thornbury, S. M. Ward, and K. M. Sanders, Am. J. Physiol. - Cell Physiol., 263 (1992).
  29. E. Distrutti, L. Monaldi, P. Ricci, and S. Fiorucci, World J. Gastroenterol., 22, 2219 (2016).
  30. J. H. Cummings and G. T. Macfarlane, J. Appl. Bacteriol., 70, 443 (1991).
  31. J. Fernandes, W. Su, S. Rahat-Rozenbloom, et al., Nutr. Diabetes, 4, e121 (2014).
  32. D. F MacFabe, Microb. Ecol. Heal. Dis., 26 (2015).
  33. J. H. Cummings, E. W. Pomare, H. W. J. Branch, et al., Gut, 28, 1221 (1987).
  34. S. G. Peters, E. W. Pomare, and C. A. Fisher, Gut, 33, 1249 (1992).
  35. A. N. Thorburn, C. I. McKenzie, S. Shen, et al., Nat.Commun. 6, 7320 (2015).
  36. M. J. Edelman, K. Bauer, S. Khanwani, et al., Cancer Chemother. Pharmacol., 51, 439 (2003).
  37. I. Kimura, D. Inoue, T. Maeda, et al., Proc. Natl. Acad. Sci. USA, 108, 8030 (2011).
  38. Z. Jirsova, M. Heczkova, H. Dankova, et al., Biomed Res.Int., 2019, ID 7084734 (2019).
  39. N. Vijay and M. Morris, Curr. Pharm. Des., 20, 1487 (2014).
  40. G. Frost, M. L. Sleeth, M. Sahuri-Arisoylu, et al., Nat.Commun., 5, ID 3611 (2014).
  41. V. Braniste, M. Al-Asmakh, C. Kowal, et al., Sci. Transl. Med., 6, 263ra158 (2014), doi: 10.1126/sci-translmed.3009759
  42. R. Mirzaei, B. Bouzari, S. R. Hosseini-Fard, et al., Biomed. Pharmacother., 139, 111661 (2021).
  43. H. Nuutinen, K. Lindros, P. Hekali, and M. Salaspuro, Alcohol, 2, 623 (1985).
  44. R. A. Waniewski and D. L. Martin, J. Neurosci., 18, 5225 (1998).
  45. D. K. Deelchand, A. A. Shestov, D. M. Koski, et al., J. Neurochem., 109, 46 (2009).
  46. C. B. Christiansen, M. B. N. Gabe, B. Svendsen, et al., Am. J. Physiol. - Gastrointest. Liver Physiol., 315, G53 (2018).
  47. H. Berkefeld, B. Fakler, and U. Schulte, Physiol. Rev., 90, 1437 (2010).
  48. A. Hermann, G. F. Sitdikova, and T. M. Weiger, Biomolecules, 5, 1870 (2015).
  49. И.Ф. Шайдуллов, М.У. Шафигуллин, Д.М. Габитова и др., Журн. эволюц. биохимии и физиологии, 54 (5), 355 (2018).
  50. A. N. Mustafina, A. V. Yakovlev, A. S. Gaifullina, et al., Biochem. Biophys. Res.Commun., 465, 825 (2015).
  51. A. S. Gaifullina, A. V. Yakovlev, A. N. Mustafina, et al., FEBS Lett., 590, 3375 (2016).
  52. N. B. Dass, A. K. John, A. K. Bassil, et al., Neurogastroenterol. Motil., 19, 66 (2007).
  53. И. Ф. Шайдуллов, Н. Н. Хаертдинов, Д. Н. Шарафутдинова и др., Уч. записки КГВАМ им. Н.Э. Баумана, 249 (1), 240 (2022).
  54. N. Cullen and P. L. Carten, Brain Res., 588, 49 (1992).
  55. S. S. Stojilkovic, J. Tabak, and R. Bertram, Endocr. Rev., 31, 845 (2010).
  56. I. Shaidullov, E. Ermakova, A. Gaifullina, et al., Pflugers Arch. Eur. J. Physiol., 473, 67 (2021).
  57. M. N. Yoon, M. J. Kim, H. S. Koong, D. K. Kim, S. H. Kim, H. S. Park, Alcohol., 63, 53 (2017).
  58. V. Andreu-I CTnandez, A. Bastons-Compta, E. Navarro-Tapia, et al., Sci. Rep., 9 (1), 1562 (2019).
  59. N. D. Aberg, K. G. Brywe, and J. Isgaard, Sci. World J., 6, 53 (2006).
  60. F. Nyberg, M. Hallberg, Nat. Rev. Endocrinol. 9, 357-365 (2013).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies