Structure of an ice-binding protein from myoxocephalus octodecemspinosus determined by molecular dynamics and based on circular dichroism spectra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the survival strategies evolved by the organisms living in cold ecosystems is production of ice-binding proteins. An important feature of these proteins is to bind to the surface of ice, keep the ice from growing and prevent cells from damage and death. To understand the mechanism underlying interaction between icebinding proteins and ice, it is necessary to know the structure of these extraordinary proteins. This study contributes towards information on the structural and dynamic mechanisms of ice-binding proteins that ensure the adaptation of organisms to extreme conditions. Research on the mechanisms by which ice-binding proteins develop adaptation to cold opens up great opportunities in solving a wide range of interesting problems in medicine, such as the development of effective cryoprotectants for cells and organs, as well as in the food industry, such as long-term food storage without losing nutritional quality at the consumer level.

About the authors

G. A Oleinik

Institute of Chemical Biology and Fundamental Medicine

Novosibirsk, Russia

P. Zhdanova

Institute of Chemical Biology and Fundamental Medicine

Novosibirsk, Russia

V. V Koval

Institute of Chemical Biology and Fundamental Medicine;Novosibirsk State University

Novosibirsk, Russia

A. A Chernonosov

Institute of Chemical Biology and Fundamental Medicine

Novosibirsk, Russia

S. V Baranova

Institute of Chemical Biology and Fundamental Medicine

Email: swb@niboch.nsc.ru
Novosibirsk, Russia

References

  1. H. Kawahara, in Psychrophiles: From Biodiversity to Biotechnology, Ed. by R. Margesin (Springer International Publishing, Cham, 2017), PP. 237-257.
  2. J. S. H. Lorv, D. R. Rose, and B. R. Glick, Scientifica (Cairo), 2014, 976895 (2014).
  3. M. Bar Dolev, I. Braslavsky, and P. L. Davies, Annu. Rev. Biochem., 85, 515 (2016).
  4. A. Biaikowska, E. Majewska, A. Olczak, and A. Twarda-Clapa, Biomolecules, 10 (2), 274 (2020).
  5. A. L. DeVries and D. E. Wohlschlag, Science, 163 (3871), 1073 (1969).
  6. C.-H. C. Cheng, Curr. Opin. Genetics & Development, 8 (6), 715 (1998).
  7. C. Deng, C.-H. C. Cheng, H. Ye, et al., Proc. Natl. Acad. Sci. USA, 107 (50), 21593 (2010).
  8. D. Doucet, V. K. Walker, and W. Qin, Cell. Mol. Life Sci., 66 (8), 1404 (2009).
  9. M. Bredow, V. K. Walker, Ice-Binding Proteins in Plants. Front Plant Sci 8, S. 2153 (2017).
  10. G. Deng, D. W. Andrews, and R. A. Laursen, FEBS Lett., 402, 17 (1997).
  11. W. K. Low, Q. Lin, C. Stathakis, et al., J. Biol. Chem., 276 (15), 11582 (2001).
  12. Z. Zhao, G. Deng, Q. Lui, and R. A. Laursen, Biochim. Biophys. Acta - Prot. Structure and Mol. Enzy-mol., 1382 (2), 177 (1998).
  13. A. Y. Chang, V. W. Chau, J. A. Landas, and Y. Pang, JEMI-methods, 1, 22 (2017).
  14. ProteaseMAX(TM) Surfactant, Trypsin Enhancer Technical Bulletin TB373 (Promega Corporation, 2015).
  15. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Anal. Chem., 68 (5), 850 (1996).
  16. J. Jumper, R. Evans, A. Pritzel, et al., Nature, 596 (7873), 583 (2021).
  17. A. Waterhouse, M. Bertoni, S. Bienert, et al., Nucl. Acids Res., 46 (W1), W296 (2018).
  18. D. Case, K. Belfon, S. Ben-Shalom, et al., Amber20 (University of California, San Francisco, 2020).
  19. A. W. Gotz, M. J. Williamson, D. Xu, et al., J. Chem. Theory Comput., 8 (5), 1542 (2012).
  20. R. Salomon-Ferrer, A. W. Gotz, D. Poole, et al., J. Chem. Theory Comput., 9 (9), 3878 (2013).
  21. Y. Khalak, B. Baumeier, and M. Karttunen, J. Chem. Phys., 149 (22), 224507 (2018).
  22. M. Matsumoto, T. Yagasaki, and H. Tanaka, J.Comput. Chem., 39 (1), 61 (2018).
  23. E. F. Pettersen, T. D. Goddard, and C. C. Huang, J.Comput. Chem., 25 (13), 1605 (2004).
  24. D. R. Roe and T. E. Cheatham, J. Chem. Theory Com-put., 9 (7), 3084 (2013).
  25. B. Bogdanov and R. D. Smith, Mass Spectrom. Rev., 24 (2), 168 (2005).
  26. G. Deng and R. A. Laursen, Biochim. Biophys. Acta, 1388 (2), 305 (1998).
  27. C. Tian, K. Kasavajhala, K. A. A. Belfon, et al., J. Chem. Theory Comput., 16 (1), 528 (2020).
  28. C. Vega, E. Sanz, and J. L. F. Abascal, J. Chem. Phys., 122 (11), 114507 (2005).
  29. A. S. Oude Vrielink, A. Aloi, L. L. C. Olijve, and I. K. Voets, Biointerphases, 11 (1), 18906 (2016).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies