Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 83, № 1 (2018): Suppl

Article

The Institute of Protein Research of the Russian Academy of Sciences Is 50 Years Old

Nadezhdina E.

Аннотация

Here I introduce collection of review articles written by members of the Institute of Protein Research of the Russian Academy of Sciences. This collection commemorates the 50th anniversary of the Institute. The review articles cover a broad range of problems concerning the spatial structure of protein molecules, including the state of the molten globule, protein–RNA interactions, polysome and ribosome structure, the molecular colony method, and the original methods for studying the structure of proteins. Several of the reviews consider the practical use of knowledge about the structure of proteins and protein polymers. They reflect both the long experience of the authors and contemporary scientific data.

Biochemistry (Moscow). 2018;83(1):S1-S2
pages S1-S2 views

Review

50+ Years of Protein Folding

Finkelstein A.

Аннотация

The ability of proteins to spontaneously form their spatial structures is a long-standing puzzle in molecular biology. Experimentally measured rates of spontaneous folding of single-domain globular proteins range from microseconds to hours: the difference–10-11 orders of magnitude–is the same as between the lifespan of a mosquito and the age of the Universe. This review (based on the literature and some personal recollections) describes a winding road to understanding spontaneous folding of protein structure. The main attention is given to the free-energy landscape of conformations of a protein chain–especially to the barrier separating its unfolded (U) and the natively folded (N) states–and to physical the-ories of rates of crossing this barrier in both directions: from U to N, and from N to U. It is shown that theories of both these processes come to essentially the same result and outline the observed range of folding and unfolding rates for single-domain globular proteins. In addition, they predict the maximal size of protein domains that fold under solely thermodynamic (rather than kinetic) control, and explain the observed maximal size of “foldable” protein domains.

Biochemistry (Moscow). 2018;83(1):S3-S18
pages S3-S18 views

Thirty Years of Studies of Qβ Replicase: What Have We Learned and What Is Yet to Be Learned?

Chetverin A.

Аннотация

Qβ replicase (RNA-directed RNA polymerase of bacteriophage Qβ) has an unsurpassed capacity to amplify polynucleotides in vitro. In 1986, the Group of Viral RNA Biochemistry was organized at the Institute of Protein Research in order to exploit this property for the synthesis of messenger RNAs to be used in cell-free translation systems. Although the task has not been implemented in full, this work has led to a number of unexpected important results including uncovering the nature of the “template-free” RNA synthesis by Qβ replicase, discovering the ability of RNA molecules for spontaneous recombination, revealing the unusual mechanism Qβ replicase uses to discriminate between its proper and improper templates, and discovering a new function of the largest ribosomal protein S1, that is also one of the replicase subunits. Finally, our work resulted in the invention of the molecular colonies technique that has become the basis for the next generation sequencing methods and provided a new insight into the origin of life. However, Qβ replicase has not yet revealed all its secrets, and its studies promise further interesting findings.

Biochemistry (Moscow). 2018;83(1):S19-S32
pages S19-S32 views

The Molten Globule Concept: 45 Years Later

Bychkova V., Semisotnov G., Balobanov V., Finkelstein A.

Аннотация

In this review, we describe traditional systems where the molten globule (MG) state has been detected and give a brief description of the solution of Levinthal’s paradox. We discuss new results obtained for MG-mediated folding of “nontraditional” proteins and a possible functional role of the MG. We also report new data on the MG, especially the dry molten globule.

Biochemistry (Moscow). 2018;83(1):S33-S47
pages S33-S47 views

Three-Dimensional Organization of Polyribosomes–A Modern Approach

Afonina Z., Shirokov V.

Аннотация

Polyribosomes in cells usually have a certain structural organization whose significance has not yet been elucidated. The development of cryo electron tomography has provided a new approach to study polyribosome structure. New data confirm or correct observations made earlier by classical techniques of electron microscopy. The existence of circular and linear (zigzag) topology of polyribosomes was confirmed, and their relationship with the frequently observed tworow forms was clarified. Contacts between ribosomes have been identified in densely packed three-dimensional helical polyribosomes. At the same time, modern cell-free translation systems have opened the possibility of investigating polyribosomes on mRNA of a given structure to elucidate the mechanism of polyribosome structure formation, especially of circular polyribosomes. There is an increasing amount of data supporting the idea of interdependence between polyribosome structure and their translational activity. Moreover, participation of polyribosomes in mRNA transport and localization of protein synthesis in the cell has been shown. Improvement of the resolution and the development of the cryo electron tomography technique for the analysis of polyribosomes in situ will enable further progress in understanding the process of protein synthesis in cells.

Biochemistry (Moscow). 2018;83(1):S48-S55
pages S48-S55 views

Archaeal Flagella as Biotemplates for Nanomaterials with New Properties

Beznosov S., Pyatibratov M., Fedorov O.

Аннотация

At the end of 1980s, regions of the polypeptide chain of bacterial flagella subunits (flagellins) responsible for different properties of these protein polymers were identified by structural studies. It was found that the N-and C-terminal regions are responsible for the polymerization properties of subunits, and the central region is responsible for antigenic properties of the flagellum. Soon after that, it was proposed to use variability of the central flagellin domain for directed modification to impart new properties to the flagellum surface. Such studies of flagella and other polymeric structures of bacterial origin thrived. However bacterial polymers have some shortcomings, mainly their instability to dissociating effects. This shortcoming is absent in archaeal flagella. A limiting factor was the lack of the three-dimensional structure of archaeal flagellins. A method was developed that allowed modifying flagella of the halophilic archaeon Halobacterium salinarum in a peptide that connects positively charged ions. Later, corresponding procedures were used that allowed preparing the anode material for a lithiumion battery whose characteristics 4-5-fold exceeded those of batteries commonly used in industrial production. We describe other advantages of archaeal flagella over bacterial analogs when used in nanotechnology.

Biochemistry (Moscow). 2018;83(1):S56-S61
pages S56-S61 views

Studies of the Process of Amyloid Formation by Aβ Peptide

Galzitskaya O., Galushko E., Selivanova O.

Аннотация

Studies of the process of amyloid formation by Aβ peptide have been topical due to the critical role of this peptide in the pathogenesis of Alzheimer’s disease. Many articles devoted to this process are available in the literature; however, none of them gives a detailed description of the mechanism of the process of generation of amyloids. Moreover, there are no reliable data on the influence of modified forms of Aβ peptide on its amyloid formation. To appreciate the role of Aβ aggregation in the pathogenesis of Alzheimer’s disease and to develop a strategy for its treatment, it is necessary to have a well-defined description of the molecular mechanism underlying the formation of amyloids as well as the contribution of each intermediate to this process. We are convinced that a combined analysis of theoretical and experimental methods is a way for understanding molecular mechanisms of numerous diseases. Based on our experimental data and molecular modeling, we have constructed a general model of the process of amyloid formation by Aβ peptide. Using the data described in our previous publications, we propose a model of amyloid formation by this peptide that differs from the generally accepted model. Our model can be applied to other proteins and peptides as well. According to this model, the main building unit for the formation of amyloid fibrils is a ring-like oligomer. Upon interaction with each other, ring-like oligomers form long fibrils of different morphology. This mechanism of generation of amyloid fibrils may be common for other proteins and peptides.

Biochemistry (Moscow). 2018;83(1):S62-S80
pages S62-S80 views

Methods for Screening Live Cells

Gordeev A., Chetverin A.

Аннотация

Cell screening or, in other words, identification of cells with certain properties is now increasingly used in scientific and medical research, e.g., in diagnostics, drug testing, and production of cell clones with desired characteristics. In this review, we discuss existing methods of cell screening and their classification according to the cell presentation format. We describe the principles of the one-dimensional and two-dimensional formats and compare the main advantages and drawbacks of these formats. The first part describes the methods based on the 2D-format of cell presentation, when cells are immobilized in the same plane by various techniques. The second part describes the methods of the 1D-screening, when cells are aligned in a line in a stream of fluid and scanned one-by-one while passing through a detector. The final part of the review describes the method of high-performance cell analysis based on the merged gel technique. This technique combines the advantages of both 1D and 2D formats and, according to the authors, might become an effective alternative to many modern methods of cell screening.

Biochemistry (Moscow). 2018;83(1):S81-S102
pages S81-S102 views

Chirality and Handedness of Protein Structures

Efimov A.

Аннотация

In proteins, the polypeptide chain forms a number of right-and left-handed helices and superhelices, right-and left-turned hairpins, and some other structures that are nonsuperimposable, although they are not mirror images of each other as the Lamino acids are not converted to the Damino acids. This property of protein structures will be referred to here as pseudo-chirality–or handedness. It has been shown that there are two kinds of handedness in proteins–helical handedness and handedness of arrangement. Some protein structures exhibit both the kinds of handedness. Handedness is observed at all levels of protein structural organization–from α-helices, β-strands, hairpins, βαβ-units up to complex structural motifs, superhelices, and supramolecular structures in fibrous and polymer proteins. There are several structures that have unique handedness in proteins, for example, α-helices, αα-corners, βαβ-units, abcd-units, and so on. This property of the polypeptide chain is of particular value in protein folding and protein modeling, because it drastically reduces the number of possible folds.

Biochemistry (Moscow). 2018;83(1):S103-S110
pages S103-S110 views

Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins

Nikulin A.

Аннотация

This review is focused on the structural aspects of interaction between ribosomal proteins and ribosomal RNA in bacterial ribosomes and complexes of ribosomal proteins with specific fragments of ribosomal RNA. Special attention is given to the recognition of specific spatial architecture of the double-stranded ribosomal RNA by ribosomal proteins and to the role of unstructured protein regions in stabilization of distant ribosomal RNA segments.

Biochemistry (Moscow). 2018;83(1):S111-S133
pages S111-S133 views

High-Pressure Scanning Microcalorimetry – A New Method for Studying Conformational and Phase Transitions

Potekhin S.

Аннотация

The development of high-pressure scanning microcalorimetry and the first results studying transitions in proteins, lipids, and model polymers are reviewed. Special attention is given to changes (increments) in volume parameters upon transitions as well as the nature of these changes. It is demonstrated that the use of the model of compound transfer reaction in its purest form for assessment of denaturation volume effects failed due to serious difficulties.

Biochemistry (Moscow). 2018;83(1):S134-S145
pages S134-S145 views

Analysis of Insulin Analogs and the Strategy of Their Further Development

Selivanova O., Grishin S., Glyakina A., Sadgyan A., Ushakova N., Galzitskaya O.

Аннотация

We analyzed the structural properties of the peptide hormone insulin and described the mechanism of its physiological action, as well as effects of insulin in type 1 and 2 diabetes. Recently published data on the development of novel insulin preparations based on combining molecular design and genetic engineering approaches are presented. New strategies for creation of long-acting insulin analogs, the mechanisms of functioning of these analogs and their structure are discussed. Side effects of insulin preparations are described, including amyloidogenesis and possible mitogenic effect. The pathways for development of novel insulin analogs are outlined with regard to the current requirements for therapeutic preparations due to the wider occurrence of diabetes of both types.

Biochemistry (Moscow). 2018;83(1):S146-S162
pages S146-S162 views

Investigations of Photosensitive Proteins by Serial Crystallography

Selikhanov G., Fando M., Dontsova M., Gabdulkhakov A.

Аннотация

This review contains recent data on serial femtosecond X-ray crystallography (SFX), based on a femtosecond X-ray free electron laser, as well as on the possibilities of its application for studying photosensitive proteins. Development of this method began rather recently, and it has already shown its effectiveness and some unique advantages over conventional X-ray structural analysis. This technology is especially promising for structural studies of membrane proteins and for kinetic studies. The main principle of the method, the possibility of its application in structural biology, its advantages and disadvantages, as well as its prospects for further development are analyzed in this review. Special attention is given to publications in which the SFX method has been used to study photosensitive proteins.

Biochemistry (Moscow). 2018;83(1):S163-S175
pages S163-S175 views

Interactions between the Translation Machinery and Microtubules

Chudinova E., Nadezhdina E.

Аннотация

Microtubules are components of eukaryotic cytoskeleton that are involved in the transport of various components from the nucleus to the cell periphery and back. They also act as a platform for assembly of complex molecular ensembles. Ribonucleoprotein (RNP) complexes, such as ribosomes and mRNPs, are transported over significant distances (e.g. to neuronal processes) along microtubules. The association of RNPs with microtubules and their transport along these structures are essential for compartmentalization of protein biosynthesis in cells. Microtubules greatly facilitate assembly of stress RNP granules formed by accumulation of translation machinery components during cell stress response. Microtubules are necessary for the cytoplasm-to-nucleus transport of proteins, including ribosomal proteins. At the same time, ribosomal proteins and RNA-binding proteins can influence cell mobility and cytoplasm organization by regulating microtubule dynamics. The molecular mechanisms underlying the association between the translation machinery components and microtubules have not been studied systematically; the results of such studies are mostly fragmentary. In this review, we attempt to fill this gap by summarizing and discussing the data on protein and RNA components of the translation machinery that directly interact with microtubules or microtubule motor proteins.

Biochemistry (Moscow). 2018;83(1):S176-S189
pages S176-S189 views

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах